Menu Close

lim-x-4x-4x-4x-4x-4x-




Question Number 117052 by bemath last updated on 09/Oct/20
     lim_(x→∞)  (√(4x+(√(4x+(√(4x+(√(4x)))))))) − (√(4x)) =?
limx4x+4x+4x+4x4x=?
Answered by bobhans last updated on 09/Oct/20
lim_(x→∞)  (√(4x(1+((√(4x+(√(4x+(√(4x))))))/(4x))))) −(√(4x))  lim_(x→∞)  (√(4x)) [ (√(1+(√((1/(4x))+(√((1/((4x)^3 ))+(√(1/((4x)^7 ))))))))) −1 ] =  letting (√(4x)) = (1/t)→ { (((1/(4x))=t^2 )),(((1/((4x)^3 )) = t^6  )),(((1/((4x)^7 )) = t^(14) )) :}  lim_(t→0)  (((√(1+(√(t^2 +(√(t^6 +(√t^(14) ))))))) −1)/t) =   (1/2) × lim_(t→0)  ((√(t^2 +(√(t^6 +t^7 ))))/t) = (1/2)×lim_(t→0)  ((√(t^2 +t^3 (√(1+t))))/t)  = (1/2) × lim_(t→0)  ((t(√(1+t(√(1+t)))))/t) = (1/2)
limx4x(1+4x+4x+4x4x)4xlimx4x[1+14x+1(4x)3+1(4x)71]=letting4x=1t{14x=t21(4x)3=t61(4x)7=t14limt01+t2+t6+t141t=12×limt0t2+t6+t7t=12×limt0t2+t31+tt=12×limt0t1+t1+tt=12

Leave a Reply

Your email address will not be published. Required fields are marked *