Question Number 130176 by liberty last updated on 23/Jan/21
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{6x}+\sqrt{\mathrm{8x}^{\mathrm{2}} −\sqrt{\mathrm{2x}^{\mathrm{3}} +\sqrt{\mathrm{4x}^{\mathrm{5}} }}}}{\:\sqrt[{\mathrm{6}}]{\mathrm{x}^{\mathrm{6}} −\mathrm{x}^{\mathrm{3}} +\sqrt{\mathrm{4x}^{\mathrm{5}} }}\:+\:\mathrm{x}}=? \\ $$
Answered by EDWIN88 last updated on 23/Jan/21
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{6x}+\sqrt{\mathrm{8x}^{\mathrm{2}} −\sqrt{\mathrm{2x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} \sqrt{\mathrm{x}}}}}{\:\sqrt[{\mathrm{6}}]{\mathrm{x}^{\mathrm{6}} −\mathrm{x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} \sqrt{\mathrm{x}}}\:+\mathrm{x}}\:= \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{6x}+\sqrt{\mathrm{8x}^{\mathrm{2}} −\mathrm{x}\sqrt{\mathrm{2x}+\mathrm{2}\sqrt{\mathrm{x}}}}}{\mathrm{x}\:\sqrt[{\mathrm{6}}]{\mathrm{1}−\mathrm{x}^{−\mathrm{3}} +\mathrm{2x}^{−\mathrm{4}} \sqrt{\mathrm{x}}}\:+\mathrm{x}}\:= \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{x}\:\left(\mathrm{6}+\sqrt{\mathrm{8}−\mathrm{x}^{−\mathrm{1}} \sqrt{\mathrm{2x}+\mathrm{2}\sqrt{\mathrm{x}}}}\:\right)}{\mathrm{x}\left(\sqrt[{\mathrm{6}}]{\mathrm{1}−\mathrm{x}^{−\mathrm{3}} +\mathrm{2x}^{−\mathrm{4}} \sqrt{\mathrm{x}}}\:+\mathrm{1}\right)}\:= \\ $$$$\:\frac{\mathrm{6}+\sqrt{\mathrm{8}}}{\mathrm{2}}\:=\:\mathrm{3}+\sqrt{\mathrm{2}} \\ $$$$ \\ $$