Menu Close

lim-x-6x-k-2-3x-2-10-3x-5-x-20-then-k-2-1-




Question Number 94463 by Abdulrahman last updated on 18/May/20
lim_(x→∞) ((6x^(k−2) +3x^2 +10)/(3x^5 +x+20))  then k^2 +1=?
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{6x}^{\mathrm{k}−\mathrm{2}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{10}}{\mathrm{3x}^{\mathrm{5}} +\mathrm{x}+\mathrm{20}} \\ $$$$\mathrm{then}\:\mathrm{k}^{\mathrm{2}} +\mathrm{1}=? \\ $$
Commented by john santu last updated on 19/May/20
lim_(x→∞)  ((6x^(k−2) +3x^2 +10)/(3x^5 +x+20)) = ???
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{6x}^{\mathrm{k}−\mathrm{2}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{10}}{\mathrm{3x}^{\mathrm{5}} +\mathrm{x}+\mathrm{20}}\:=\:??? \\ $$
Commented by mathmax by abdo last updated on 19/May/20
=lim_(x→∞)   2 x^(k−2−5)  =lim _(x→∞)  2x^(k−7)   if k>7  lim  =∞    if k<7    lim  =0  if k=7   lim =2
$$=\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \:\:\mathrm{2}\:\mathrm{x}^{\mathrm{k}−\mathrm{2}−\mathrm{5}} \:=\mathrm{lim}\:_{\mathrm{x}\rightarrow\infty} \:\mathrm{2x}^{\mathrm{k}−\mathrm{7}} \\ $$$$\mathrm{if}\:\mathrm{k}>\mathrm{7}\:\:\mathrm{lim}\:\:=\infty\:\:\:\:\mathrm{if}\:\mathrm{k}<\mathrm{7}\:\:\:\:\mathrm{lim}\:\:=\mathrm{0} \\ $$$$\mathrm{if}\:\mathrm{k}=\mathrm{7}\:\:\:\mathrm{lim}\:=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *