Menu Close

lim-x-7-x-2-6-x-3-2x-5-x-




Question Number 163582 by mathlove last updated on 08/Jan/22
lim_(x→∞) ((7^(x+2) +6^x )/(3^(2x) −5^x ))=?
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{7}^{{x}+\mathrm{2}} +\mathrm{6}^{{x}} }{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{5}^{{x}} }=? \\ $$
Answered by cortano1 last updated on 08/Jan/22
 lim_(x→∞)  ((49((7/9))^x +((2/3))^x )/(1−((5/9))^x )) = 0
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{49}\left(\frac{\mathrm{7}}{\mathrm{9}}\right)^{{x}} +\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} }{\mathrm{1}−\left(\frac{\mathrm{5}}{\mathrm{9}}\right)^{{x}} }\:=\:\mathrm{0} \\ $$
Commented by mathlove last updated on 09/Jan/22
  If given a little explanation
$$ \\ $$If given a little explanation

Leave a Reply

Your email address will not be published. Required fields are marked *