Menu Close

lim-x-7-x-a-4-x-7-b-find-a-b-




Question Number 146505 by mathdanisur last updated on 13/Jul/21
lim_(x→7)  (((√(x - a)) - 4)/(x - 7)) = b  find  a∙b=?
limx7xa4x7=bfindab=?
Answered by ajfour last updated on 13/Jul/21
i just dunno  but letsee whtits  bout..  if limit has to exist, i.e.  b finite then d^r →0  ⇒ n^r →0  so    x−a=16  but x→7  ⇒   a→ −9  but then    b= ((∂n^r /∂x)/(∂d^r /∂x))=((1/(2(√(x−a))))/1)  but gain x→7, so  ⇒   b=(1/(2(√(7−(−9)))))=(1/8)  now if you ask    ab   forget (∙),  u have −(9/8)
ijustdunnobutletseewhtitsbout..iflimithastoexist,i.e.bfinitethendr0nr0soxa=16butx7a9butthenb=nrxdrx=12xa1butgainx7,sob=127(9)=18nowifyouaskabforget(),uhave98
Commented by mathdanisur last updated on 13/Jul/21
thanks Ser
thanksSer
Answered by mathmax by abdo last updated on 13/Jul/21
f(x)=(((√(x−a))−4)/(x−7))  changement x−7=t give  f(x)=(((√(t+7−a))−4)/t)=g(t)  (t→0) ⇒  g(t)=(((√(7−a))(√(1+(t/(7−a))))−4)/t)∼(((√(7−a))×(1+(t/(2(7−a))))−4)/t)  (((√(7−a))−4)/t) +(1/(2(√(7−a))))=b  ⇒(√(7−a))−4=0 ⇒7−a=16 ⇒a=−9 ⇒  b=(1/(2(√(7+9))))=(1/8) ⇒ab=−(9/8)
f(x)=xa4x7changementx7=tgivef(x)=t+7a4t=g(t)(t0)g(t)=7a1+t7a4t7a×(1+t2(7a))4t7a4t+127a=b7a4=07a=16a=9b=127+9=18ab=98
Commented by mathdanisur last updated on 13/Jul/21
thank you Ser
thankyouSer

Leave a Reply

Your email address will not be published. Required fields are marked *