Menu Close

lim-x-8-x-3-x-1-3-4-x-2-x-




Question Number 153404 by liberty last updated on 07/Sep/21
  lim_(x→∞) ((8^x +3^x ))^(1/3)  −(√(4^x −2^x )) =?
limx8x+3x34x2x=?
Answered by EDWIN88 last updated on 07/Sep/21
 lim_(x→∞)  ((8^x +3^x ))^(1/3) −(8^x )^(1/3)  +(√4^x )−(√(4^x −2^x )) =   L_1 =lim_(x→∞)  (((8^x +3^x )−8^x )/( (((8^x +3^x )^2 ))^(1/3) +((8^x (8^x +3^x )))^(1/3) +4^x ))   L_1 =lim_(x→∞) (3^x /( ((8^(2x) (1+((3/8))^x )^2 ))^(1/3) +((8^(2x) (1+((3/8))^x )))^(1/3) +4^x ))  L_1 =lim_(x→∞) ((((3/4))^x )/( (((1+((3/8))^x )^2 ))^(1/3) +((1+((3/8))^x ))^(1/3) +1))  L_1 =(0/3)=0  L_2 =lim_(x→∞) (√4^x )−(√(4^x −2^x ))   L_2 =lim_(x→0)  2^x  (1−(√(1−((1/2))^x )))  L_2 =lim_(X→0) ((1−(√(1−X)))/X) = ((1−(1−(1/2)X))/X)=(1/2)   Then L=L_1 +L_2 =0+(1/2)=(1/2)
limx8x+3x38x3+4x4x2x=L1=limx(8x+3x)8x(8x+3x)23+8x(8x+3x)3+4xL1=limx3x82x(1+(38)x)23+82x(1+(38)x)3+4xL1=limx(34)x(1+(38)x)23+1+(38)x3+1L1=03=0L2=limx4x4x2xL2=limx02x(11(12)x)L2=limX011XX=1(112X)X=12ThenL=L1+L2=0+12=12

Leave a Reply

Your email address will not be published. Required fields are marked *