Menu Close

lim-x-8x-3-4x-2-1-1-3-8x-3-px-2-1-1-3-1-4-find-p-




Question Number 82175 by jagoll last updated on 19/Feb/20
lim_(x→−∞)  ((8x^3 −4x^2 +1))^(1/(3 )) −((8x^3 +∣px∣^2 −1))^(1/(3 ))  = (1/4)  find p
limx8x34x2+138x3+px213=14findp
Commented by mr W last updated on 19/Feb/20
please check sir!  question is wrong. the limit is ≤−(1/3).  it can neither be (1/4) nor −(1/4).
pleasechecksir!questioniswrong.thelimitis13.itcanneitherbe14nor14.
Commented by john santu last updated on 19/Feb/20
lim_(u→0^− )  ((((8−4u+u^3 ))^(1/(3 ))  − ((8+∣p∣ u−u^3 ))^(1/(3 )) )/u)  = lim_(u→0^− )  ((((3u^2 −4)/(3((((8−4u+u^3 )^2 ))^(1/(3 )) ))− (((−3u^2 +∣p∣))/(3((((8+∣p∣u−u^3 )^2 ))^(1/(3 )) )))/1)  = ((−4)/(3.4))−((∣p∣)/(3.4)) = (1/4) ⇒ −(1/3)−1= ((∣p∣)/3)  the question is wrong
limu084u+u338+puu33u=limu03u243((84u+u3)23(3u2+p)3((8+puu3)231=43.4p3.4=14131=p3thequestioniswrong
Commented by mathmax by abdo last updated on 19/Feb/20
we have^3 (√(8x^3 −4x^2  +1))=^3 (√(8x^3 (1−(1/(2x))+(1/(8x^3 )))))  =2x(√(1−(1/(2x))+(1/(8x^3 )))) ∼ 2x(1+(1/2)(−(1/(2x)) +(1/(8x^3 )))) (x→−∞)  =2x{1−(1/(4x)) +(1/(16x^3 ))} =2x−(1/2) +(1/(8x^2 ))  also   we have^3 (√(8x^3 +∣p∣x^2 −1))=^3 (√(8x^3 (1+((∣p∣)/(8x))−(1/(8x^3 )))))  =2x(√(1+((∣p∣)/(8x))−(1/(8x^3 ))))∼2x{1+(1/2)(((∣p∣)/(8x))−(1/(8x^3 )))}  =2x{1+((∣p∣)/(16x))−(1/(16x^3 ))} =2x +((∣p∣)/8)−(1/(8x^2 )) ⇒  (...)−(....)∼2x−(1/2) +(1/(8x^2 ))−2x−((∣p∣)/8) +(1/(8x^2 )) ∼−(1/2)−((∣p∣)/8) ⇒  lim_(x→−∞) (....)=−(1/2)−((∣p∣)/8) =(1/4) ⇒−((∣p∣)/8) =(1/2)+(1/4) =(3/4)  impossible with absolute value so there is a error in the Q.
wehave38x34x2+1=38x3(112x+18x3)=2x112x+18x32x(1+12(12x+18x3))(x)=2x{114x+116x3}=2x12+18x2alsowehave38x3+px21=38x3(1+p8x18x3)=2x1+p8x18x32x{1+12(p8x18x3)}=2x{1+p16x116x3}=2x+p818x2()(.)2x12+18x22xp8+18x212p8limx(.)=12p8=14p8=12+14=34impossiblewithabsolutevaluesothereisaerrorintheQ.
Commented by mathmax by abdo last updated on 19/Feb/20
sorry error at line 4 we have   ^3 (√(8x^3 +∣px∣^2 −1 ))=^3 (√(8x^3  +p^2 x^2 −1))=^3 (√(8x^3 (1+(p^2 /(8x))−(1/(8x^3 )))))  =2x(√(1+(p^2 /(8x))−(1/(8x^3 ))))∼2x{1+(1/2)((p^2 /(8x))−(1/(8x^3 )))}  =2x+x((p^2 /(8x))−(1/(8x^3 ))) =2x+(p^2 /8)−(1/(8x^3 ))   but the error still existing...
sorryerroratline4wehave38x3+px21=38x3+p2x21=38x3(1+p28x18x3)=2x1+p28x18x32x{1+12(p28x18x3)}=2x+x(p28x18x3)=2x+p2818x3buttheerrorstillexisting
Answered by mr W last updated on 20/Feb/20
let p^2 =a>0  lim_(x→−∞)  ((8x^3 −4x^2 +1))^(1/(3 )) −((8x^3 +∣px∣^2 −1))^(1/(3 ))    =lim_(x→−∞)  x(((8−(4/x)+(1/x^3 )))^(1/(3 )) −((8+(a/x)−(1/x^3 )))^(1/(3 ))  )  =lim_(x→−∞)  ((((8−(4/x)+(1/x^3 )))^(1/(3 )) −((8+(a/x)−(1/x^3 )))^(1/(3 ))  )/(1/x))  =lim_(t→−0)  ((((8−4t+t^3 ))^(1/(3 )) −((8+at−t^3 ))^(1/(3 ))  )/t)  =lim_(t→−0)  (((2−(t/3)−(t^2 /(18))+o(t^2 ))−(2+((at)/(12))−((∣p∣^2 t^2 )/(288))+o(t^2 )) )/t)  =−((1/3)+(a/(12)))≠(1/4) !  =−((1/3)+(a/(12)))≤−(1/3)
letp2=a>0limx8x34x2+138x3+px213=limxx(84x+1x338+ax1x33)=limx84x+1x338+ax1x331x=limt084t+t338+att33t=limt0(2t3t218+o(t2))(2+at12p2t2288+o(t2))t=(13+a12)14!=(13+a12)13
Commented by jagoll last updated on 19/Feb/20
if the limit value is equal to (1/3)  then (1/3)+((∣p∣)/(12)) = (1/3) ⇒ p = 0 sir?
ifthelimitvalueisequalto13then13+p12=13p=0sir?
Commented by mr W last updated on 19/Feb/20
you mean the limit =−(1/3)?   then yes.
youmeanthelimit=13?thenyes.

Leave a Reply

Your email address will not be published. Required fields are marked *