Question Number 34554 by rahul 19 last updated on 07/May/18

Commented by math khazana by abdo last updated on 09/May/18

Commented by Joel578 last updated on 10/May/18

Commented by abdo mathsup 649 cc last updated on 11/May/18

Answered by Joel578 last updated on 08/May/18
![L = lim_(x→∞) (((a + b^(1/x) − 1)/a))^x ln L = lim_(x→∞) [x . ln (((a + b^(1/x) − 1)/a))] = lim_(x→∞) [((ln (((a + b^(1/x) − 1)/a)))/(1/x))] = lim_(x→∞) [((−((ln b . b^(1/x) )/(x^2 (a + b^(1/x) − 1))))/(−(1/x^2 )))] = lim_(x→∞) [((ln b . b^(1/x) )/(a + b^(1/x) − 1))] = ln b[lim_(x→∞) ((b^(1/x) /(a + b^(1/x) − 1)))] = ln b . ((1/(a + 1 − 1))) ln L = ((1/a)) . ln b = ln (b^(1/a) ) L = b^(1/a)](https://www.tinkutara.com/question/Q34579.png)
Commented by rahul 19 last updated on 12/May/18

Commented by rahul 19 last updated on 12/May/18
��