Menu Close

lim-x-a-1-b-1-x-a-x-a-b-gt-0-




Question Number 34554 by rahul 19 last updated on 07/May/18
lim_(x→∞)  (((a−1+b^(1/x) )/a))^x = ?  (a,b>0)
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{a}−\mathrm{1}+{b}^{\frac{\mathrm{1}}{{x}}} }{{a}}\right)^{{x}} =\:? \\ $$$$\left({a},{b}>\mathrm{0}\right) \\ $$
Commented by math khazana by abdo last updated on 09/May/18
let put A(x)= (((a−1 +b^(1/x) )/a))^x   A(x)= {1 +((b^(1/x)  −1)/a)}^x ⇒ln(A(x))=xln{1 +((b^(1/x)  −1)/a)}  xln{1+((b^(1/x)  −1)/a)} ∼ x ((b^(1/x)  −1)/a)   ch.(1/x) =t give   =(1/t) ((b^t  −1)/a) =(1/t) ((e^(tlnb)  −1)/a) ∼ ((t lnb)/(ta)) = ((lnb)/a) ⇒  lim_(x→+∞)  ln(A(x)) = ((lnb)/a) ⇒ lim_(x→+∞) A(x)= e^((lnb)/a)
$${let}\:{put}\:{A}\left({x}\right)=\:\left(\frac{{a}−\mathrm{1}\:+{b}^{\frac{\mathrm{1}}{{x}}} }{{a}}\right)^{{x}} \\ $$$${A}\left({x}\right)=\:\left\{\mathrm{1}\:+\frac{{b}^{\frac{\mathrm{1}}{{x}}} \:−\mathrm{1}}{{a}}\right\}^{{x}} \Rightarrow{ln}\left({A}\left({x}\right)\right)={xln}\left\{\mathrm{1}\:+\frac{{b}^{\frac{\mathrm{1}}{{x}}} \:−\mathrm{1}}{{a}}\right\} \\ $$$${xln}\left\{\mathrm{1}+\frac{{b}^{\frac{\mathrm{1}}{{x}}} \:−\mathrm{1}}{{a}}\right\}\:\sim\:{x}\:\frac{{b}^{\frac{\mathrm{1}}{{x}}} \:−\mathrm{1}}{{a}}\:\:\:{ch}.\frac{\mathrm{1}}{{x}}\:={t}\:{give} \\ $$$$\:=\frac{\mathrm{1}}{{t}}\:\frac{{b}^{{t}} \:−\mathrm{1}}{{a}}\:=\frac{\mathrm{1}}{{t}}\:\frac{{e}^{{tlnb}} \:−\mathrm{1}}{{a}}\:\sim\:\frac{{t}\:{lnb}}{{ta}}\:=\:\frac{{lnb}}{{a}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow+\infty} \:{ln}\left({A}\left({x}\right)\right)\:=\:\frac{{lnb}}{{a}}\:\Rightarrow\:{lim}_{{x}\rightarrow+\infty} {A}\left({x}\right)=\:{e}^{\frac{{lnb}}{{a}}} \\ $$
Commented by Joel578 last updated on 10/May/18
Sir, would you mind to explain 3rd line?  x ln {1 + ((b^((1/x) )  − 1)/a)} ∼ x (((b^(1/x)  − 1)/a))
$$\mathrm{Sir},\:\mathrm{would}\:\mathrm{you}\:\mathrm{mind}\:\mathrm{to}\:\mathrm{explain}\:\mathrm{3rd}\:\mathrm{line}? \\ $$$${x}\:\mathrm{ln}\:\left\{\mathrm{1}\:+\:\frac{{b}^{\frac{\mathrm{1}}{{x}}\:} \:−\:\mathrm{1}}{{a}}\right\}\:\sim\:{x}\:\left(\frac{{b}^{\frac{\mathrm{1}}{{x}}} \:−\:\mathrm{1}}{{a}}\right) \\ $$
Commented by abdo mathsup 649 cc last updated on 11/May/18
for  x∈v(0)  ln(1+u) ∼ u   take u =((b^(1/x)  −1)/a) ⇒  ln{1+((b^(1/x)  −1)/a)} ∼ ((b^(1/x)  −1)/a) ....
$${for}\:\:{x}\in{v}\left(\mathrm{0}\right)\:\:{ln}\left(\mathrm{1}+{u}\right)\:\sim\:{u}\:\:\:{take}\:{u}\:=\frac{{b}^{\frac{\mathrm{1}}{{x}}} \:−\mathrm{1}}{{a}}\:\Rightarrow \\ $$$${ln}\left\{\mathrm{1}+\frac{{b}^{\frac{\mathrm{1}}{{x}}} \:−\mathrm{1}}{{a}}\right\}\:\sim\:\frac{{b}^{\frac{\mathrm{1}}{{x}}} \:−\mathrm{1}}{{a}}\:…. \\ $$
Answered by Joel578 last updated on 08/May/18
     L = lim_(x→∞)  (((a + b^(1/x)  − 1)/a))^x   ln L = lim_(x→∞)  [x . ln (((a + b^(1/x)  − 1)/a))]            = lim_(x→∞)  [((ln (((a + b^(1/x)  − 1)/a)))/(1/x))]            = lim_(x→∞)  [((−((ln b . b^(1/x) )/(x^2 (a + b^(1/x)  − 1))))/(−(1/x^2 )))]            = lim_(x→∞)  [((ln b . b^(1/x) )/(a + b^(1/x)  − 1))]            = ln b[lim_(x→∞)  ((b^(1/x) /(a + b^(1/x)  − 1)))] = ln b . ((1/(a + 1 − 1)))  ln L = ((1/a)) . ln b = ln (b^(1/a) )  L = b^(1/a)
$$\:\:\:\:\:{L}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{a}\:+\:{b}^{\frac{\mathrm{1}}{{x}}} \:−\:\mathrm{1}}{{a}}\right)^{{x}} \\ $$$$\mathrm{ln}\:{L}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left[{x}\:.\:\mathrm{ln}\:\left(\frac{{a}\:+\:{b}^{\frac{\mathrm{1}}{{x}}} \:−\:\mathrm{1}}{{a}}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{\mathrm{ln}\:\left(\frac{{a}\:+\:{b}^{\mathrm{1}/{x}} \:−\:\mathrm{1}}{{a}}\right)}{\mathrm{1}/{x}}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{−\frac{\mathrm{ln}\:{b}\:.\:{b}^{\mathrm{1}/{x}} }{{x}^{\mathrm{2}} \left({a}\:+\:{b}^{\mathrm{1}/{x}} \:−\:\mathrm{1}\right)}}{−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left[\frac{\mathrm{ln}\:{b}\:.\:{b}^{\mathrm{1}/{x}} }{{a}\:+\:{b}^{\mathrm{1}/{x}} \:−\:\mathrm{1}}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\mathrm{ln}\:{b}\left[\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{b}^{\mathrm{1}/{x}} }{{a}\:+\:{b}^{\mathrm{1}/{x}} \:−\:\mathrm{1}}\right)\right]\:=\:\mathrm{ln}\:{b}\:.\:\left(\frac{\mathrm{1}}{{a}\:+\:\mathrm{1}\:−\:\mathrm{1}}\right) \\ $$$$\mathrm{ln}\:{L}\:=\:\left(\frac{\mathrm{1}}{{a}}\right)\:.\:\mathrm{ln}\:{b}\:=\:\mathrm{ln}\:\left({b}^{\frac{\mathrm{1}}{{a}}} \right) \\ $$$${L}\:=\:{b}^{\frac{\mathrm{1}}{{a}}} \\ $$
Commented by rahul 19 last updated on 12/May/18
Sir , pls explain numerator of line 3 (i know you  have use l−hospital.)
$${Sir}\:,\:{pls}\:{explain}\:{numerator}\:{of}\:{line}\:\mathrm{3}\:\left({i}\:{know}\:{you}\right. \\ $$$$\left.{have}\:{use}\:{l}−{hospital}.\right) \\ $$
Commented by rahul 19 last updated on 12/May/18
��

Leave a Reply

Your email address will not be published. Required fields are marked *