Menu Close

lim-x-a-1-b-1-x-a-x-a-b-gt-0-




Question Number 34554 by rahul 19 last updated on 07/May/18
lim_(x→∞)  (((a−1+b^(1/x) )/a))^x = ?  (a,b>0)
limx(a1+b1xa)x=?(a,b>0)
Commented by math khazana by abdo last updated on 09/May/18
let put A(x)= (((a−1 +b^(1/x) )/a))^x   A(x)= {1 +((b^(1/x)  −1)/a)}^x ⇒ln(A(x))=xln{1 +((b^(1/x)  −1)/a)}  xln{1+((b^(1/x)  −1)/a)} ∼ x ((b^(1/x)  −1)/a)   ch.(1/x) =t give   =(1/t) ((b^t  −1)/a) =(1/t) ((e^(tlnb)  −1)/a) ∼ ((t lnb)/(ta)) = ((lnb)/a) ⇒  lim_(x→+∞)  ln(A(x)) = ((lnb)/a) ⇒ lim_(x→+∞) A(x)= e^((lnb)/a)
letputA(x)=(a1+b1xa)xA(x)={1+b1x1a}xln(A(x))=xln{1+b1x1a}xln{1+b1x1a}xb1x1ach.1x=tgive=1tbt1a=1tetlnb1atlnbta=lnbalimx+ln(A(x))=lnbalimx+A(x)=elnba
Commented by Joel578 last updated on 10/May/18
Sir, would you mind to explain 3rd line?  x ln {1 + ((b^((1/x) )  − 1)/a)} ∼ x (((b^(1/x)  − 1)/a))
Sir,wouldyoumindtoexplain3rdline?xln{1+b1x1a}x(b1x1a)
Commented by abdo mathsup 649 cc last updated on 11/May/18
for  x∈v(0)  ln(1+u) ∼ u   take u =((b^(1/x)  −1)/a) ⇒  ln{1+((b^(1/x)  −1)/a)} ∼ ((b^(1/x)  −1)/a) ....
forxv(0)ln(1+u)utakeu=b1x1aln{1+b1x1a}b1x1a.
Answered by Joel578 last updated on 08/May/18
     L = lim_(x→∞)  (((a + b^(1/x)  − 1)/a))^x   ln L = lim_(x→∞)  [x . ln (((a + b^(1/x)  − 1)/a))]            = lim_(x→∞)  [((ln (((a + b^(1/x)  − 1)/a)))/(1/x))]            = lim_(x→∞)  [((−((ln b . b^(1/x) )/(x^2 (a + b^(1/x)  − 1))))/(−(1/x^2 )))]            = lim_(x→∞)  [((ln b . b^(1/x) )/(a + b^(1/x)  − 1))]            = ln b[lim_(x→∞)  ((b^(1/x) /(a + b^(1/x)  − 1)))] = ln b . ((1/(a + 1 − 1)))  ln L = ((1/a)) . ln b = ln (b^(1/a) )  L = b^(1/a)
L=limx(a+b1x1a)xlnL=limx[x.ln(a+b1x1a)]=limx[ln(a+b1/x1a)1/x]=limx[lnb.b1/xx2(a+b1/x1)1x2]=limx[lnb.b1/xa+b1/x1]=lnb[limx(b1/xa+b1/x1)]=lnb.(1a+11)lnL=(1a).lnb=ln(b1a)L=b1a
Commented by rahul 19 last updated on 12/May/18
Sir , pls explain numerator of line 3 (i know you  have use l−hospital.)
Sir,plsexplainnumeratorofline3(iknowyouhaveuselhospital.)
Commented by rahul 19 last updated on 12/May/18
��

Leave a Reply

Your email address will not be published. Required fields are marked *