Menu Close

lim-x-a-x-1-2-a-1-2-x-a-k-a-gt-0-lim-x-a-x-1-3-a-1-3-x-2-a-2-




Question Number 84283 by jagoll last updated on 11/Mar/20
lim_(x→a)  (((∣x∣−1)^2 −(∣a∣−1)^2 )/(x−a)) = k , a>0  lim_(x→a)  (((∣x∣−1)^3 −(∣a∣−1)^3 )/(x^2 −a^2 )) =
limxa(x1)2(a1)2xa=k,a>0limxa(x1)3(a1)3x2a2=
Answered by john santu last updated on 11/Mar/20
lim_(x→a)  (((x−1)^2 −(a−1)^2 )/(x−a)) = k  lim_(x→a)  ((x^2 −2x+1−a^2 +2a−1)/(x−a)) = k  lim_(x→a)  (((x−a)(x+a)−2(x−a))/(x−a)) =k  lim_(x→a)  (((x−a)(x+a−2))/(x−a)) = k  ⇒ k = 2a−2 ⇒ a−1 = (1/2)k  (2)lim_(x→a)  (((x−1)^3 −(a−1)^3 )/(x^2 −a^2 )) =   lim_(x→a)  ((3(x−1)^2 )/(2x)) = ((3(a−1)^2 )/(2a))   =((3×(1/4)k^2 )/(2a))= ((3k^2 )/(8a))
limxa(x1)2(a1)2xa=klimxax22x+1a2+2a1xa=klimxa(xa)(x+a)2(xa)xa=klimxa(xa)(x+a2)xa=kk=2a2a1=12k(2)limxa(x1)3(a1)3x2a2=limxa3(x1)22x=3(a1)22a=3×14k22a=3k28a
Commented by jagoll last updated on 11/Mar/20
thank you mister
thankyoumister

Leave a Reply

Your email address will not be published. Required fields are marked *