Menu Close

lim-x-a-x-1-m-a-1-m-x-1-n-a-1-n-Don-t-use-L-hospital-rules-




Question Number 29180 by A1B1C1D1 last updated on 05/Feb/18
lim_(x → a)  ((((x)^(1/m)  − (a)^(1/m) )/( (x)^(1/n)  − (a)^(1/n) )))  Don′t use L′hospital rules :-)
limxa(xmamxnan)DontuseLhospitalrules:)
Answered by Rasheed.Sindhi last updated on 05/Feb/18
Formula            lim_(x→a)  ((x^n −a^n )/(x−a))=na^(n−1)   lim_(x → a)  ((((x)^(1/m)  − (a)^(1/m) )/( (x)^(1/n)  − (a)^(1/n) )))=lim_(x→a)  ((x^(1/m) −a^(1/n) )/(x^(1/n) −a^(1/n) ))       =lim_(x→a)  ((     ((x^(1/m) −a^(1/n) )/(x−a))     )/((x^(1/n) −a^(1/n) )/(x−a)))       =lim_(x→a)  ((    lim_(x→a)  ((x^(1/m) −a^(1/n) )/(x−a))     )/(lim_(x→a)  ((x^(1/n) −a^(1/n) )/(x−a))))=((  (1/m)a^((1/m)−1) )/((1/n)a^((1/n)−1) ))           =(n/m)a^((1/m)−(1/n)) =(n/m)a^((n−m)/(nm))
Formulalimxaxnanxa=nan1limxa(xmamxnan)=limxax1/ma1/nx1/na1/n=limxax1/ma1/nxax1/na1/nxa=limxalimxax1/ma1/nxalimxax1/na1/nxa=1ma1m11na1n1=nma1m1n=nmanmnm
Commented by A1B1C1D1 last updated on 05/Feb/18
Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *