Question Number 80650 by jagoll last updated on 05/Feb/20
$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\left(\mid{x}\mid−{a}\right)^{\mathrm{3}} −\left(\mid{a}\mid−{a}\right)^{\mathrm{3}} }{{x}−{a}}\:=\:{P}\:,\:{a}\:<\mathrm{0} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{\left(\mid{x}\mid−{a}\right)^{\mathrm{2}} −\left(\mid{a}\mid−{a}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} −{ax}}=? \\ $$
Commented by john santu last updated on 05/Feb/20
$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{\left(\mid{x}\mid−{a}\right)−\left(\mid{a}\mid−{a}\right)}{{x}−{a}}\:=\:\frac{{P}}{\mathrm{3}\left(−\mathrm{2}{a}\right)^{\mathrm{2}} }\:=\frac{{P}}{\mathrm{12}{a}^{\mathrm{2}} } \\ $$$$\Rightarrow\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{\left(\mid{x}\mid−{a}\right)−\left(\mid{a}\mid−{a}\right)}{{x}−{a}}\:×\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\left(\mid{x}\mid−{a}\right)+\left(\mid{a}\mid−{a}\right)}{{x}}= \\ $$$$\frac{{P}}{\mathrm{12}{a}^{\mathrm{2}} }×\frac{−\mathrm{4}{a}}{{a}}=−\frac{{P}}{\mathrm{3}{a}^{\mathrm{2}} } \\ $$
Commented by jagoll last updated on 05/Feb/20
$${thx}\:{mister}\:{john} \\ $$
Answered by MJS last updated on 05/Feb/20
$${P}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist} \\ $$
Commented by jagoll last updated on 05/Feb/20
$${why}? \\ $$
Commented by jagoll last updated on 05/Feb/20
$${i}'{m}\:{correct}\:{my}\:{question}\:{sir} \\ $$
Commented by MJS last updated on 05/Feb/20
$$\mathrm{for}\:\mathrm{the}\:\mathrm{corrected}\:\mathrm{question} \\ $$$${P}=−\mathrm{12}{a}^{\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{limit}\:\mathrm{is}\:\mathrm{4}\:\forall{a}<\mathrm{0}\:\mathrm{which}\:\mathrm{is}\:−\frac{{P}}{\mathrm{3}{a}^{\mathrm{2}} } \\ $$
Commented by jagoll last updated on 05/Feb/20
$${thank}\:{you}\:{mister} \\ $$
Answered by MJS last updated on 05/Feb/20
$${a}<\mathrm{0}\:\Rightarrow\:{x}<\mathrm{0}\:\mathrm{if}\:{x}\:\mathrm{close}\:\mathrm{enough}\:\mathrm{to}\:{a} \\ $$$$\left(\mathrm{1}\right)\:\Rightarrow\:\frac{\left(\mid{x}\mid−{a}\right)^{\mathrm{3}} −\left(\mid{a}\mid−{a}\right)^{\mathrm{3}} }{{x}−{a}}=−{x}^{\mathrm{2}} −\mathrm{4}{ax}−\mathrm{7}{a}^{\mathrm{2}} \underset{{x}\rightarrow{a}} {=} \\ $$$$=−\mathrm{12}{a}^{\mathrm{2}} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\Rightarrow\:\frac{\left(\mid{x}\mid−{a}\right)^{\mathrm{2}} −\left(\mid{a}\mid−{a}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} −{ax}}=\frac{\mathrm{3}{a}}{{x}}+\mathrm{1}\underset{{x}\rightarrow{a}} {=}\mathrm{4} \\ $$
Commented by jagoll last updated on 05/Feb/20
$${how}\:{to}\:{get}\:−{x}^{\mathrm{2}} −\mathrm{4}{ax}−\mathrm{7}{a}^{\mathrm{2}} \:{mister}? \\ $$
Commented by MJS last updated on 05/Feb/20
$${r}<\mathrm{0}\:\Rightarrow\:\mid{r}\mid=−{r} \\ $$$$\frac{\left(−{x}−{a}\right)^{\mathrm{3}} −\left(−{a}−{a}\right)^{\mathrm{3}} }{{x}−{a}}=\frac{−\left({x}+{a}\right)^{\mathrm{3}} +\left(\mathrm{2}{a}\right)^{\mathrm{3}} }{{x}−{a}}= \\ $$$$=\frac{−{x}^{\mathrm{3}} −\mathrm{3}{ax}^{\mathrm{2}} −\mathrm{3}{a}^{\mathrm{2}} {x}+\mathrm{7}{a}^{\mathrm{3}} }{{x}−{a}}=−\frac{\left({x}−{a}\right)\left({x}^{\mathrm{2}} +\mathrm{4}{ax}+\mathrm{7}{a}^{\mathrm{2}} \right)}{{x}−{a}}= \\ $$$$=−{x}^{\mathrm{2}} −\mathrm{4}{ax}−\mathrm{7}{a}^{\mathrm{2}} \\ $$$$ \\ $$
Commented by jagoll last updated on 05/Feb/20
$${oo}\:{i}\:{understand}\:{sir}.\:{thank}\:{much} \\ $$