Menu Close

lim-x-a-x-a-a-x-a-x-a-a-a-gt-0-




Question Number 126801 by john_santu last updated on 24/Dec/20
  lim_(x→a)   ((x^a −a^x )/(a^x −a^a )) =  ; a>0
$$\:\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\:\frac{{x}^{{a}} −{a}^{{x}} }{{a}^{{x}} −{a}^{{a}} }\:=\:\:;\:{a}>\mathrm{0}\: \\ $$$$\: \\ $$
Answered by liberty last updated on 24/Dec/20
lim_(x→a)  (((d/dx)(x^a −a^x ))/((d/dx)(a^x −a^a ))) = lim_(x→a)  ((ax^(a−1) −ln a.(a^x ))/(ln a.(a^x )))   = ((a.a^(a−1) −a^a .ln a)/(a^a .ln a)) = ((a^a (1−ln a))/(a^a .ln a))= ((1−ln a)/(ln a))
$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{\frac{{d}}{{dx}}\left({x}^{{a}} −{a}^{{x}} \right)}{\frac{{d}}{{dx}}\left({a}^{{x}} −{a}^{{a}} \right)}\:=\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{{ax}^{{a}−\mathrm{1}} −\mathrm{ln}\:{a}.\left({a}^{{x}} \right)}{\mathrm{ln}\:{a}.\left({a}^{{x}} \right)} \\ $$$$\:=\:\frac{{a}.{a}^{{a}−\mathrm{1}} −{a}^{{a}} .\mathrm{ln}\:{a}}{{a}^{{a}} .\mathrm{ln}\:{a}}\:=\:\frac{{a}^{{a}} \left(\mathrm{1}−\mathrm{ln}\:{a}\right)}{{a}^{{a}} .\mathrm{ln}\:{a}}=\:\frac{\mathrm{1}−\mathrm{ln}\:{a}}{\mathrm{ln}\:{a}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *