Menu Close

lim-x-a-x-a-a-x-a-x-a-a-a-gt-0-




Question Number 126801 by john_santu last updated on 24/Dec/20
  lim_(x→a)   ((x^a −a^x )/(a^x −a^a )) =  ; a>0
limxaxaaxaxaa=;a>0
Answered by liberty last updated on 24/Dec/20
lim_(x→a)  (((d/dx)(x^a −a^x ))/((d/dx)(a^x −a^a ))) = lim_(x→a)  ((ax^(a−1) −ln a.(a^x ))/(ln a.(a^x )))   = ((a.a^(a−1) −a^a .ln a)/(a^a .ln a)) = ((a^a (1−ln a))/(a^a .ln a))= ((1−ln a)/(ln a))
limxaddx(xaax)ddx(axaa)=limxaaxa1lna.(ax)lna.(ax)=a.aa1aa.lnaaa.lna=aa(1lna)aa.lna=1lnalna

Leave a Reply

Your email address will not be published. Required fields are marked *