Menu Close

lim-x-csc-2-2-x-1-4-x-2-




Question Number 112917 by abdullahquwatan last updated on 10/Sep/20
lim_(x→∞)  [csc^2 ((2/x))−(1/4)x^2 ]
limx[csc2(2x)14x2]
Commented by bobhans last updated on 10/Sep/20
lim_(w→0) (((2w+sin (2w))/(4w)))(((2w−sin (2w))/(w.sin^2  (2w))))  1×lim_(w→0)  (((2w−sin 2w)/(4w^3 )))=  lim_(w→0)  ((2−2cos 2w)/(12w^2 )) = lim_(w→0) (((1−cos 2w)/(6w^2 )))  =lim_(w→0) (((2sin^2 w)/(6w^2 )))=(1/3)
limw0(2w+sin(2w)4w)(2wsin(2w)w.sin2(2w))1×limw0(2wsin2w4w3)=limw022cos2w12w2=limw0(1cos2w6w2)=limw0(2sin2w6w2)=13
Commented by abdullahquwatan last updated on 10/Sep/20
thank you sir
thankyousir
Commented by abdullahquwatan last updated on 10/Sep/20
why 4w^3  ??
why4w3??
Answered by mathmax by abdo last updated on 10/Sep/20
let f(x) =(1/(sin^2 ((2/x))))−(x^2 /4)  changement (2/x)=t give (x/2)=(1/t) ⇒x=(2/t)  (x→∞ ⇔t→0) ⇒f(x) =(1/(sin^2 t))−(1/4)((4/t^2 )) =(1/(sin^2 t))−(1/t^2 )=g(t)  =((t^2 −sin^2 t)/(t^2 sin^2 t))  we have sint ∼t−(t^3 /6) ⇒sin^2 t ∼(t−(t^3 /6))^2  =t^2 −(1/3)t^4 +(t^6 /(36))  ∼t^2 −(1/3)t^4  ⇒g(t) ∼((t^2 −t^2  +(1/3)t^4 )/(t^2 .t^2 )) =(1/3) ⇒lim_(t→0) g(t)=(1/3) ⇒  lim_(x→∞) f(x) =(1/3)
letf(x)=1sin2(2x)x24changement2x=tgivex2=1tx=2t(xt0)f(x)=1sin2t14(4t2)=1sin2t1t2=g(t)=t2sin2tt2sin2twehavesinttt36sin2t(tt36)2=t213t4+t636t213t4g(t)t2t2+13t4t2.t2=13limt0g(t)=13limxf(x)=13
Commented by abdullahquwatan last updated on 10/Sep/20
thank you sir
thankyousir
Commented by mathmax by abdo last updated on 11/Sep/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *