Question Number 85129 by Rio Michael last updated on 19/Mar/20
$$\underset{{x}\rightarrow{e}} {\mathrm{lim}}\:\left[\underset{\mathrm{0}} {\overset{{e}} {\int}}\left(\frac{\mathrm{1}}{{x}}\right){dx}\right]\:=? \\ $$
Commented by john santu last updated on 19/Mar/20
$$\int\:_{\mathrm{0}} ^{\mathrm{e}} \:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:\mathrm{dx}\:=\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\:\mathrm{ln}\left(\mathrm{x}\right)\right]_{\mathrm{x}} ^{\mathrm{e}} \:=\: \\ $$$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}−\mathrm{ln}\left(\mathrm{x}\right)\right) \\ $$$$\underset{{x}\rightarrow\mathrm{e}} {\mathrm{lim}}\:\left[\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}−\mathrm{ln}\left(\mathrm{x}\right)\right)\:\right]\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\:\underset{{x}\rightarrow\mathrm{e}} {\mathrm{lim}}\:\left(\mathrm{1}−\mathrm{ln}\left(\mathrm{x}\right)\:\right]\:=\:\right. \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{0}\right)\:=\:\mathrm{0} \\ $$
Commented by Rio Michael last updated on 19/Mar/20
$$\mathrm{thanks}\:\mathrm{sir} \\ $$