Menu Close

lim-x-e-x-1-x-




Question Number 175994 by sciencestudent last updated on 10/Sep/22
lim_(x→∞) ((e^x −1)/x)=?
$${li}\underset{{x}\rightarrow\infty} {{m}}\frac{{e}^{{x}} −\mathrm{1}}{{x}}=? \\ $$
Answered by JDamian last updated on 10/Sep/22
∞
$$\infty \\ $$
Answered by cortano2 last updated on 11/Sep/22
=((e^∞ −1)/∞)=(∞/∞)=1
$$=\frac{{e}^{\infty} −\mathrm{1}}{\infty}=\frac{\infty}{\infty}=\mathrm{1} \\ $$
Commented by Ar Brandon last updated on 11/Sep/22
e^x ≫x as x→+∞  lim_(x→+∞) ((e^x −1)/x) → +∞
$${e}^{{x}} \gg{x}\:\mathrm{as}\:{x}\rightarrow+\infty \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{e}^{{x}} −\mathrm{1}}{{x}}\:\rightarrow\:+\infty \\ $$
Answered by Raxreedoroid last updated on 11/Sep/22
lim_(x→∞) ((e^x −1)/x)((∞/∞))  lim_(x→∞) (e^x /1)=+∞
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{e}^{{x}} −\mathrm{1}}{{x}}\left(\frac{\infty}{\infty}\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{e}^{{x}} }{\mathrm{1}}=+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *