Menu Close

lim-x-e-x-2-2-




Question Number 30657 by NECx last updated on 23/Feb/18
lim_(x→∞)  e^(−(x^2 /2))
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$
Commented by Cheyboy last updated on 23/Feb/18
lim_(x→∞) e^(− (∞^2 /2))     lim_(x→∞)  e^(−∞)     lim_(x→∞ )  (1/e^∞ )   As x increases approching ⇒∞   (1/e^∞ ) approches 0    Hence lim_(x→∞)  (1/e^∞ ) =0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{e}^{−\:\frac{\infty^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{e}^{−\infty} \\ $$$$ \\ $$$$\underset{{x}\rightarrow\infty\:} {\mathrm{lim}}\:\frac{\mathrm{1}}{{e}^{\infty} } \\ $$$$\:{As}\:{x}\:{increases}\:{approching}\:\Rightarrow\infty\: \\ $$$$\frac{\mathrm{1}}{{e}^{\infty} }\:{approches}\:\mathrm{0} \\ $$$$ \\ $$$${Hence}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{e}^{\infty} }\:=\mathrm{0} \\ $$$$ \\ $$
Commented by NECx last updated on 25/Feb/18
thank you sir.
$${thank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *