Question Number 117416 by Lordose last updated on 11/Oct/20
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } −\mathrm{cosx}}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \\ $$
Answered by Olaf last updated on 11/Oct/20
$$\forall{x}\in\mathbb{R},\:\mathrm{sin}{x}\:\leqslant\:{x}\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} {x}}\:\geqslant\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\: \\ $$$${e}^{{x}^{\mathrm{2}} } −\mathrm{cos}{x}\:\geqslant\:{e}^{{x}^{\mathrm{2}} } −\mathrm{1} \\ $$$$\frac{{e}^{{x}^{\mathrm{2}} } −\mathrm{cos}{x}}{\mathrm{sin}^{\mathrm{2}} {x}}\:\geqslant\:\frac{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\mathrm{But}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}}{{x}^{\mathrm{2}} }\:=\:\underset{{u}\rightarrow\infty} {\mathrm{lim}}\frac{{e}^{{u}} −\mathrm{1}}{{u}}\:=\:\underset{{u}\rightarrow\infty} {\mathrm{lim}}\frac{{e}^{{u}} −\mathrm{0}}{\mathrm{1}}\:=\:+\infty \\ $$$$\left(\mathrm{Hospital}'\mathrm{s}\:\mathrm{rule}\right) \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{e}^{{x}^{\mathrm{2}} } −\mathrm{cos}{x}}{\mathrm{sin}^{\mathrm{2}} {x}}\:=\:+\infty \\ $$$$\left(\mathrm{by}\:\mathrm{comparison}\right) \\ $$
Commented by Lordose last updated on 11/Oct/20
$$\mathrm{the}\:\mathrm{text}\:\mathrm{said}\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by MJS_new last updated on 11/Oct/20
$$\mathrm{obviously}\:\mathrm{the}\:\mathrm{text}\:\mathrm{is}\:\mathrm{wrong} \\ $$
Commented by Olaf last updated on 11/Oct/20
$${do}\:{x}\:=\:{n}\pi \\ $$$${we}\:{have}\:\frac{{e}^{\pi^{\mathrm{2}} {n}^{\mathrm{2}} } −\left(−\mathrm{1}\right)^{{n}} }{\mathrm{0}^{+} }\:\rightarrow\infty \\ $$
Commented by Olaf last updated on 11/Oct/20
$$\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{it}'\mathrm{s}\:\mathrm{in}\:\mathrm{0} \\ $$
Answered by MJS_new last updated on 11/Oct/20
$$−\mathrm{1}\leqslant\mathrm{cos}\:{x}\:\leqslant\mathrm{1} \\ $$$$\mathrm{0}\leqslant\mathrm{sin}^{\mathrm{2}} \:{x}\leqslant\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{lim}\:=\infty \\ $$
Answered by Bird last updated on 12/Oct/20
$${let}\:{f}\left({x}\right)=\frac{{e}^{{x}^{\mathrm{2}} } −{cosx}}{{sin}^{\mathrm{2}} {x}}\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\mathrm{2}\frac{{e}^{{x}^{\mathrm{2}} } −{cosx}}{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)} \\ $$$${we}\:{have}\:{cosu}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} \:{u}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!} \\ $$$$=\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{u}^{\mathrm{4}} }{\mathrm{4}!}−..\:\Rightarrow\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\leqslant{cosu}\leqslant\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}+\frac{{u}^{\mathrm{4}} }{\mathrm{4}!} \\ $$$$−\mathrm{1}+\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:−\frac{{u}^{\mathrm{4}} }{\mathrm{4}!}\leqslant−{cosu}\:\leqslant−\mathrm{1}+\frac{{u}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\frac{{u}^{\mathrm{2}} }{\mathrm{2}}−\frac{{u}^{\mathrm{4}} }{\mathrm{4}!}\leqslant\mathrm{1}−{cosu}\leqslant\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\frac{\mathrm{2}}{{u}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{1}−{cosu}}\leqslant\frac{\mathrm{1}}{\frac{{u}^{\mathrm{2}} }{\mathrm{2}}−\frac{{u}^{\mathrm{4}} }{\mathrm{4}!}}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}\leqslant\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} −\frac{\mathrm{16}}{\mathrm{4}!}{x}^{\mathrm{4}} }\:\Rightarrow \\ $$$$\frac{{e}^{{x}^{\mathrm{2}} } −{cosx}}{\mathrm{2}{x}^{\mathrm{2}} }\leqslant\frac{{e}^{{x}^{\mathrm{2}} } −{cosx}}{\mathrm{1}−{cosx}} \\ $$$${but}\:{lim}_{{x}\rightarrow+\infty} \:\:\frac{{e}^{{x}^{\mathrm{2}} } −{cosx}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$={lim}_{{x}\rightarrow+\infty} \frac{{e}^{{x}^{\mathrm{2}} } }{\mathrm{2}{x}^{\mathrm{2}} }\:=+\infty\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)=+\infty \\ $$$$ \\ $$