Menu Close

lim-x-ln-1-2-x-ln-1-3-x-




Question Number 165372 by LEKOUMA last updated on 31/Jan/22
lim_(x→+∞) ln (1+2^x )ln (1+(3/x))
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}ln}\:\left(\mathrm{1}+\mathrm{2}^{{x}} \right)\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{3}}{{x}}\right) \\ $$
Answered by Ar Brandon last updated on 31/Jan/22
lim_(x→+∞) ln(1+2^x )ln(1+(3/x))  =lim_(x→+∞) (3/x)ln(1+2^x )  =lim_(x→+∞) (3/x)(ln2^x +ln(1+2^(−x) ))  =lim_(x→+∞) (3/x)ln2^x +lim_(x→+∞) (3/x)ln(1+2^(−x) )  =lim_(x→+∞) 3ln2+lim_(x→+∞) (3/x)×2^(−x) =3ln2
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}ln}\left(\mathrm{1}+\mathrm{2}^{{x}} \right)\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{3}}{{x}}\right) \\ $$$$=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{3}}{{x}}\mathrm{ln}\left(\mathrm{1}+\mathrm{2}^{{x}} \right) \\ $$$$=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{3}}{{x}}\left(\mathrm{ln2}^{{x}} +\mathrm{ln}\left(\mathrm{1}+\mathrm{2}^{−{x}} \right)\right) \\ $$$$=\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{3}}{{x}}\mathrm{ln2}^{{x}} +\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{3}}{{x}}\mathrm{ln}\left(\mathrm{1}+\mathrm{2}^{−{x}} \right) \\ $$$$=\underset{{x}\rightarrow+\infty} {\mathrm{lim}3ln2}+\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{3}}{{x}}×\mathrm{2}^{−{x}} =\mathrm{3ln2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *