Menu Close

lim-x-ln-3-e-x-2x-




Question Number 92289 by jagoll last updated on 06/May/20
  lim_(x→∞)  ln((((3+e)^x )/(2x))) ?
$$ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{ln}\left(\frac{\left(\mathrm{3}+\mathrm{e}\right)^{\mathrm{x}} }{\mathrm{2x}}\right)\:? \\ $$
Commented by mathmax by abdo last updated on 06/May/20
we haveA(x)=  (((3+e)^x )/(2x)) =(({3(1+(e/3))}^x )/(2x)) =((3^x ×(1+(e/3))^x )/(2x))  A(x)∼ ((3^x (1+((ex)/3)))/(2x)) =(3^x /(2x)) + 3^(x−1)  ×(e/2) ⇒+∞  (x→+∞)  ⇒lim_(x→+∞) ln(A(x)) =+∞  we have A(x)∼(3^x /(2x)) +(e/2)3^(x−1)  ⇒lim_(x→−∞) A(x) =0^+  ⇒  lim_(x→−∞) ln(A(x))=−∞
$${we}\:{haveA}\left({x}\right)=\:\:\frac{\left(\mathrm{3}+{e}\right)^{{x}} }{\mathrm{2}{x}}\:=\frac{\left\{\mathrm{3}\left(\mathrm{1}+\frac{{e}}{\mathrm{3}}\right)\right\}^{{x}} }{\mathrm{2}{x}}\:=\frac{\mathrm{3}^{{x}} ×\left(\mathrm{1}+\frac{{e}}{\mathrm{3}}\right)^{{x}} }{\mathrm{2}{x}} \\ $$$${A}\left({x}\right)\sim\:\frac{\mathrm{3}^{{x}} \left(\mathrm{1}+\frac{{ex}}{\mathrm{3}}\right)}{\mathrm{2}{x}}\:=\frac{\mathrm{3}^{{x}} }{\mathrm{2}{x}}\:+\:\mathrm{3}^{{x}−\mathrm{1}} \:×\frac{{e}}{\mathrm{2}}\:\Rightarrow+\infty\:\:\left({x}\rightarrow+\infty\right) \\ $$$$\Rightarrow{lim}_{{x}\rightarrow+\infty} {ln}\left({A}\left({x}\right)\right)\:=+\infty \\ $$$${we}\:{have}\:{A}\left({x}\right)\sim\frac{\mathrm{3}^{{x}} }{\mathrm{2}{x}}\:+\frac{{e}}{\mathrm{2}}\mathrm{3}^{{x}−\mathrm{1}} \:\Rightarrow{lim}_{{x}\rightarrow−\infty} {A}\left({x}\right)\:=\mathrm{0}^{+} \:\Rightarrow \\ $$$${lim}_{{x}\rightarrow−\infty} {ln}\left({A}\left({x}\right)\right)=−\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *