Menu Close

lim-x-ln-e-x-1-x-




Question Number 93821 by john santu last updated on 15/May/20
lim_(x→+∞)  ln(e^x +1)−x =
limx+ln(ex+1)x=
Commented by JDamian last updated on 15/May/20
0
0
Commented by mathmax by abdo last updated on 15/May/20
f(x) =ln(e^x  +1)−x ⇒f(x) =ln(e^x (1+e^(−x) ))−x  =x+ln(1+e^(−x) )−x =ln(1+e^(−x) ) ⇒lim_(x→+∞) f(x) =0
f(x)=ln(ex+1)xf(x)=ln(ex(1+ex))x=x+ln(1+ex)x=ln(1+ex)limx+f(x)=0
Commented by Kunal12588 last updated on 15/May/20
f(x)=ln(e^x +1)−x=ln(e^x +1)−ln(e^x )  =ln(1+e^(−x) )⇒lim_(x→∞^+ ) f(x)=0
f(x)=ln(ex+1)x=ln(ex+1)ln(ex)=ln(1+ex)limfx+(x)=0
Answered by john santu last updated on 15/May/20

Leave a Reply

Your email address will not be published. Required fields are marked *