Menu Close

lim-x-ln-e-x-1-x-




Question Number 93821 by john santu last updated on 15/May/20
lim_(x→+∞)  ln(e^x +1)−x =
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:\mathrm{ln}\left(\mathrm{e}^{{x}} +\mathrm{1}\right)−{x}\:=\: \\ $$
Commented by JDamian last updated on 15/May/20
0
$$\mathrm{0} \\ $$
Commented by mathmax by abdo last updated on 15/May/20
f(x) =ln(e^x  +1)−x ⇒f(x) =ln(e^x (1+e^(−x) ))−x  =x+ln(1+e^(−x) )−x =ln(1+e^(−x) ) ⇒lim_(x→+∞) f(x) =0
$${f}\left({x}\right)\:={ln}\left({e}^{{x}} \:+\mathrm{1}\right)−{x}\:\Rightarrow{f}\left({x}\right)\:={ln}\left({e}^{{x}} \left(\mathrm{1}+{e}^{−{x}} \right)\right)−{x} \\ $$$$={x}+{ln}\left(\mathrm{1}+{e}^{−{x}} \right)−{x}\:={ln}\left(\mathrm{1}+{e}^{−{x}} \right)\:\Rightarrow{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:=\mathrm{0} \\ $$
Commented by Kunal12588 last updated on 15/May/20
f(x)=ln(e^x +1)−x=ln(e^x +1)−ln(e^x )  =ln(1+e^(−x) )⇒lim_(x→∞^+ ) f(x)=0
$${f}\left({x}\right)={ln}\left({e}^{{x}} +\mathrm{1}\right)−{x}={ln}\left({e}^{{x}} +\mathrm{1}\right)−{ln}\left({e}^{{x}} \right) \\ $$$$={ln}\left(\mathrm{1}+{e}^{−{x}} \right)\Rightarrow\underset{{x}\rightarrow\infty^{+} } {{lim}f}\left({x}\right)=\mathrm{0} \\ $$
Answered by john santu last updated on 15/May/20

Leave a Reply

Your email address will not be published. Required fields are marked *