Menu Close

lim-x-ln-x-x-x-ln-x-




Question Number 183693 by LEKOUMA last updated on 28/Dec/22
lim_(x→+∞) (((ln x)^x )/x^(ln x) )
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\left(\mathrm{ln}\:{x}\right)^{{x}} }{{x}^{\mathrm{ln}\:{x}} } \\ $$
Answered by a.lgnaoui last updated on 28/Dec/22
lnx=t     ⇒x=e^t   x→+∞      ⇒t→+∞    (t^e^t  /((e^t )^t ))=(t^e^t  /e^t^2  )    ⇒ln((t^e^t  /e^t^2  ))=e^t ln(t)−t^2   t⇒+∞    e^t (ln(t)−(t^2 /e^t ))⇒+∞  donc  lim_(x→∞) (((lnx)^x )/x^(lnx) ) =+∞
$$\mathrm{lnx}=\mathrm{t}\:\:\:\:\:\Rightarrow\mathrm{x}=\mathrm{e}^{\mathrm{t}} \\ $$$$\mathrm{x}\rightarrow+\infty\:\:\:\:\:\:\Rightarrow{t}\rightarrow+\infty \\ $$$$\:\:\frac{{t}^{{e}^{{t}} } }{\left({e}^{{t}} \right)^{{t}} }=\frac{{t}^{{e}^{{t}} } }{{e}^{{t}^{\mathrm{2}} } }\:\:\:\:\Rightarrow\mathrm{ln}\left(\frac{\mathrm{t}^{\mathrm{e}^{\mathrm{t}} } }{\mathrm{e}^{\mathrm{t}^{\mathrm{2}} } }\right)=\mathrm{e}^{\mathrm{t}} \mathrm{ln}\left(\mathrm{t}\right)−\mathrm{t}^{\mathrm{2}} \\ $$$$\mathrm{t}\Rightarrow+\infty\:\:\:\:{e}^{{t}} \left(\mathrm{ln}\left(\mathrm{t}\right)−\frac{{t}^{\mathrm{2}} }{{e}^{{t}} }\right)\Rightarrow+\infty \\ $$$${donc}\:\:\mathrm{lim}_{\mathrm{x}\rightarrow\infty} \frac{\left(\mathrm{lnx}\right)^{\mathrm{x}} }{\mathrm{x}^{\mathrm{lnx}} }\:=+\infty\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *