Menu Close

lim-x-ln-x-x-You-can-only-use-series-expansion-sandwich-theorem-




Question Number 34843 by rahul 19 last updated on 11/May/18
lim_ _(x→∞)  ((ln x)/x) = ?  You can  only use  series expansion / sandwich theorem!
limxlnxx=?Youcanonlyuseseriesexpansion/sandwichtheorem!
Commented by abdo mathsup 649 cc last updated on 11/May/18
changement x =1 +(1/t) give    ((lnx)/x) =  ((ln(1 + (1/t)))/(1+(1/t))) = ((ln(1+t) −ln(t))/((t+1)/t))  =(t/(t+1)){ln(1+t) −ln(t)} = ((t ln(1+t) −tln(t))/(t+1))  = (t/(t+1))ln(1+t) −((tln(t))/(t+1))  but    ln( 1+t)^.  = (1/(1+t)) =Σ_(n=0) ^∞ (−1)^n t^n   ln(1+t) = Σ_(n=0) ^∞   (((−1)^n )/(n+1))t^(n+1)  = Σ_(n=1) ^∞  (((−1)^(n−1) )/n) t^n    ((ln(x))/x) = (t/(t+1)) (  t  −(t^2 /2) +(t^3 /3) +...) −t ln(t)Σ_(n=0) ^∞ (−1)^n  t^n   = (t^2 /(t+1))( 1−(t/2) +(t^2 /3)+...) −Σ_(n=0) ^∞ (−1)^n t^(n+1) ln(t)→0  when t→0   so lim_(x→+∞)  ((lnx)/x) =0
changementx=1+1tgivelnxx=ln(1+1t)1+1t=ln(1+t)ln(t)t+1t=tt+1{ln(1+t)ln(t)}=tln(1+t)tln(t)t+1=tt+1ln(1+t)tln(t)t+1butln(1+t).=11+t=n=0(1)ntnln(1+t)=n=0(1)nn+1tn+1=n=1(1)n1ntnln(x)x=tt+1(tt22+t33+)tln(t)n=0(1)ntn=t2t+1(1t2+t23+)n=0(1)ntn+1ln(t)0whent0solimx+lnxx=0

Leave a Reply

Your email address will not be published. Required fields are marked *