Menu Close

lim-x-log-e-x-x-h-h-gt-0-




Question Number 28098 by tawa tawa last updated on 20/Jan/18
lim_(x→∞)   ((log_e x)/x^h ) ,           h > 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{log}_{\mathrm{e}} \mathrm{x}}{\mathrm{x}^{\mathrm{h}} }\:,\:\:\:\:\:\:\:\:\:\:\:\mathrm{h}\:>\:\mathrm{0} \\ $$
Answered by ajfour last updated on 20/Jan/18
=lim_(x→∞)  (((1/x))/(hx^(h−1) )) =lim_(x→∞)  (1/(hx^h )) =0 .
$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\mathrm{1}/{x}\right)}{{hx}^{{h}−\mathrm{1}} }\:=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{hx}^{{h}} }\:=\mathrm{0}\:. \\ $$
Commented by tawa tawa last updated on 21/Jan/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *