lim-x-n-n-n-1-n-lim-x-0-tan-4x-tan-4x- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 157216 by Khalmohmmad last updated on 21/Oct/21 limx→∞(n!nn)1n=?limx→0tan4xtan4x=? Commented by cortano last updated on 21/Oct/21 (2)limx→0+tan4xtan4x=limx→0+tan4x4xtan4x4x=limx→0+tan4x4xtan4x4x=1 Answered by puissant last updated on 21/Oct/21 1)L=limn→∞(n!nn)1n;ln(L)=limn→∞1nln(n!nn)=limn→∞1n{ln(n!)−nln(n)}=limn→∞1n∑nk=1{ln(k)−ln(n)}=limn→∞1n∑nk=1ln(kn)=∫01ln(x)dxIBP→{u=lnxv′=1⇒{u′=1xv=x⇒ln(L)=[xlnx]01−∫011dx⇒ln(L)=−1→L=e−1=1e..∴∵L=limn→∞(n!nn)1n=1e..………..Lepuissant………… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-91683Next Next post: show-that-cos2x-cos3x-cos8x-sin2x-sin3x-sin8x-tanx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.