Menu Close

lim-x-n-n-n-1-n-lim-x-0-tan-4x-tan-4x-




Question Number 157216 by Khalmohmmad last updated on 21/Oct/21
lim_(x→∞)  (((n!)/n^n ))^(1/n) =?  lim_(x→0)  ((√(tan 4x))/(tan(√(4x))))=?
limx(n!nn)1n=?limx0tan4xtan4x=?
Commented by cortano last updated on 21/Oct/21
 (2)lim_(x→0^+ )  ((√(tan 4x))/(tan (√(4x)))) = lim_(x→0^+ )  (((√(tan 4x))/( (√(4x))))/((tan (√(4x)))/( (√(4x)))))   = lim_(x→0^+ )  ((√((tan 4x)/(4x)))/((tan (√(4x)))/( (√(4x))))) =1
(2)limx0+tan4xtan4x=limx0+tan4x4xtan4x4x=limx0+tan4x4xtan4x4x=1
Answered by puissant last updated on 21/Oct/21
1)  L=lim_(n→∞) (((n!)/n^n ))^(1/n) ; ln(L)=lim_(n→∞) (1/n)ln(((n!)/n^n ))  = lim_(n→∞) (1/n){ln(n!)−nln(n)}  = lim_(n→∞) (1/n)Σ_(k=1) ^n {ln(k)−ln(n)}  =lim_(n→∞) (1/n)Σ_(k=1) ^n ln((k/n)) = ∫_0 ^1 ln(x)dx  IBP →  { ((u=lnx)),((v′=1)) :} ⇒  { ((u′=(1/x))),((v=x)) :}  ⇒ ln(L)=[xlnx]_0 ^1 −∫_0 ^1 1dx  ⇒ ln(L)=−1 → L=e^(−1) =(1/e)..        ∴∵ L=lim_(n→∞) (((n!)/n^n ))^(1/n) = (1/e)..                ...........Le puissant............
1)L=limn(n!nn)1n;ln(L)=limn1nln(n!nn)=limn1n{ln(n!)nln(n)}=limn1nnk=1{ln(k)ln(n)}=limn1nnk=1ln(kn)=01ln(x)dxIBP{u=lnxv=1{u=1xv=xln(L)=[xlnx]01011dxln(L)=1L=e1=1e..∴∵L=limn(n!nn)1n=1e....Lepuissant

Leave a Reply

Your email address will not be published. Required fields are marked *