Menu Close

lim-x-n-n-n-1-n-y-n-n-n-1-n-1-n-ln-n-n-n-1-n-lnn-nlnn-lim-x-lny-lim-x-1-n-nlnn-n-nlnn-lnlim-x-y-lim-x-lnn-1-lnn-lim-x-n-n-n-




Question Number 118770 by obaidullah last updated on 19/Oct/20
lim_(x→∞) (((n!)/n^n ))^(1/n) =?  y=(((n!)/n^n ))^(1/n) =(1/n)ln(((n!)/n^n ))=(1/n)[lnn!−nlnn]  ⇒lim_(x→∞) lny=lim_(x→∞) (1/n)[nlnn−n−nlnn]  ⇒lnlim_(x→∞) y=lim_(x→∞) [lnn−1−lnn]  ⇒lim_(x→∞) (((n!)/n^n ))^(1/n) =e^(−1) =(1/e)      ★★Jaihon★★
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =? \\ $$$${y}=\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{{n}}{ln}\left(\frac{{n}!}{{n}^{{n}} }\right)=\frac{\mathrm{1}}{{n}}\left[{lnn}!−{nlnn}\right] \\ $$$$\Rightarrow\underset{{x}\rightarrow\infty} {\mathrm{lim}}{lny}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\left[{nlnn}−{n}−{nlnn}\right] \\ $$$$\Rightarrow{ln}\underset{{x}\rightarrow\infty} {\mathrm{lim}}{y}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[{lnn}−\mathrm{1}−{lnn}\right] \\ $$$$\Rightarrow\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} ={e}^{−\mathrm{1}} =\frac{\mathrm{1}}{{e}}\:\:\:\:\:\:\bigstar\bigstar{Jaihon}\bigstar\bigstar \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *