Question Number 118770 by obaidullah last updated on 19/Oct/20
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =? \\ $$$${y}=\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{{n}}{ln}\left(\frac{{n}!}{{n}^{{n}} }\right)=\frac{\mathrm{1}}{{n}}\left[{lnn}!−{nlnn}\right] \\ $$$$\Rightarrow\underset{{x}\rightarrow\infty} {\mathrm{lim}}{lny}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\left[{nlnn}−{n}−{nlnn}\right] \\ $$$$\Rightarrow{ln}\underset{{x}\rightarrow\infty} {\mathrm{lim}}{y}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[{lnn}−\mathrm{1}−{lnn}\right] \\ $$$$\Rightarrow\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} ={e}^{−\mathrm{1}} =\frac{\mathrm{1}}{{e}}\:\:\:\:\:\:\bigstar\bigstar{Jaihon}\bigstar\bigstar \\ $$