Menu Close

lim-x-pi-2-1-sin-pi-2x-5-sin-x-pi-2-ln-4-cos-pi-2x-1-pi-2-x-2-




Question Number 170018 by cortano1 last updated on 14/May/22
      lim_(x→(π/2)) (1+sin (π−2x))^(5/(sin (x−(π/2)))) .ln (4.((cos (π−2x)−1)/(((π/2)−x)^2 )))=?
limxπ2(1+sin(π2x))5sin(xπ2).ln(4.cos(π2x)1(π2x)2)=?
Answered by Mathspace last updated on 14/May/22
u(x)=(1+sin(π−2x))^(5/(sin(x−(π/2))))   and v(x)=ln(4.((cos(π−2x)−1)/(((π/2)−x)^2 ))  ⇒u(x)=(1+sin(2x))^(5/(−cosx))   =e^(−(5/(cosx))ln(1+sin(2x))   ch.x−(π/2)=t give  u(x)=u((π/2)+t)=e^(−(5/(−sint))ln(1−sin(2t)))   sint∼t  and sin(2t)∼2t ⇒  ln(1−sin(2t))∼ln(1−2t)∼−2t⇒  (5/(sint))ln(1−sin(2t)∼(5/t)(−2t)=−10 ⇒  lim u(x)=e^(−10)   v(x)=ln(4.((−cos(2x)−1)/(((π/2)−x)^2 )))(x−(π/2)=t)  =ln(4×((−cos(2((π/2)+t)−1)/t^2 ))  =ln(−4.((−cos(2t)+1)/t^2 ))  =ln((4/t^2 )(cos(2t)−1))  but cos(2t)−1<0  error at the question!...  cos(2t)∼1−2t^2  ⇒1−cos(2t)
u(x)=(1+sin(π2x))5sin(xπ2)andv(x)=ln(4.cos(π2x)1(π2x)2u(x)=(1+sin(2x))5cosx=e5cosxln(1+sin(2x)ch.xπ2=tgiveu(x)=u(π2+t)=e5sintln(1sin(2t))sinttandsin(2t)2tln(1sin(2t))ln(12t)2t5sintln(1sin(2t)5t(2t)=10limu(x)=e10v(x)=ln(4.cos(2x)1(π2x)2)(xπ2=t)=ln(4×cos(2(π2+t)1t2)=ln(4.cos(2t)+1t2)=ln(4t2(cos(2t)1))butcos(2t)1<0erroratthequestion!cos(2t)12t21cos(2t)

Leave a Reply

Your email address will not be published. Required fields are marked *