Menu Close

lim-x-pi-2-1-sin-x-tan-x-2-1-




Question Number 162301 by mnjuly1970 last updated on 28/Dec/21
   lim _(x→(π/2))  ( 1− sin(x))^( ( tan((x/2))−1 )) =?
limxπ2(1sin(x))(tan(x2)1)=?
Answered by Mathspace last updated on 28/Dec/21
f(x)=(1−sinx)^(tan((x/2))−1)   changement t=x−(π/2) give  f(x)=f(t+(π/2))  =(1−sin(t+(π/2))^(tan((t/2)+(π/4)))   =(1−cost)^(tan((t/2)+(π/4)))   =e^(tan((t/2)+(π/4))ln(1−cost))    (t→0)  =e^(((tan((t/2))+1)/(1−tan((t/2))))ln(1−cost))   cost∼1−(t^2 /2) ⇒1−cost∼(t^2 /2)  ((tan((t/2))+1)/(1−tan((t/2))))∼(((t/2)+1)/(1−(t/2))) ∼1 ⇒  f(t+(π/2))∼e^(ln((t^2 /2))) =e^(2lnt−ln2)   →0 ⇒lim_(x→(π/2))  f(x)=0
f(x)=(1sinx)tan(x2)1changementt=xπ2givef(x)=f(t+π2)=(1sin(t+π2)tan(t2+π4)=(1cost)tan(t2+π4)=etan(t2+π4)ln(1cost)(t0)=etan(t2)+11tan(t2)ln(1cost)cost1t221costt22tan(t2)+11tan(t2)t2+11t21f(t+π2)eln(t22)=e2lntln20limxπ2f(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *