Menu Close

lim-x-pi-2-1-sin-x-x-2-cot-2-x-




Question Number 106173 by john santu last updated on 03/Aug/20
lim_(x→π/2) (((1−sin x)/(x^2 cot^2 x))) ?
limxπ/2(1sinxx2cot2x)?
Answered by bemath last updated on 03/Aug/20
set x = (π/2)+♭ →(4/π^2 )×lim_(♭→0) ((1−sin ((π/2)+♭))/(cot^2 ((π/2)+♭)))=  (4/π^2 )×lim_(♭→0) ((1−cos ♭)/(tan^2 ♭)) = (4/π^2 )×lim_(♭→0) ((2sin^2 ((♭/2)))/(tan^2 ♭))  = (8/π^2 )×[lim_(♭→0) ((sin ((♭/2)))/(tan ♭)) ]^2   = (8/π^2 )×(1/4)=(2/π^2 ) ★
setx=π2+4π2×lim01sin(π2+)cot2(π2+)=4π2×lim01costan2=4π2×lim02sin2(2)tan2=8π2×[lim0sin(2)tan]2=8π2×14=2π2
Answered by mathmax by abdo last updated on 03/Aug/20
let g(x) =((1−sinx)/(x^2 cotan^2 x)) ⇒g(x) =((sin^2 x(1−sinx))/(x^2  cos^2 x))  changement x =(π/2)−t give g(x) =h(t) =((cos^2 t(1−cost))/(((π/2)−t)^2 sin^2 t))  (x→(π/2) ⇒t→0) ⇒h(t) ∼(((1−(t^2 /2))^2 .(t^2 /2))/(((π/2)−t)^2  t^2 )) =(1/2)(((1−(t^2 /2))/((π/2)−t)))^2   ⇒lim_(t→0)    h(t) =(1/2)((4/π^2 )) =(2/π^2 ) =lim_(x→(π/2))    g(x)
letg(x)=1sinxx2cotan2xg(x)=sin2x(1sinx)x2cos2xchangementx=π2tgiveg(x)=h(t)=cos2t(1cost)(π2t)2sin2t(xπ2t0)h(t)(1t22)2.t22(π2t)2t2=12(1t22π2t)2limt0h(t)=12(4π2)=2π2=limxπ2g(x)

Leave a Reply

Your email address will not be published. Required fields are marked *