lim-x-pi-2-1-sin-x-x-2-cot-2-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 106173 by john santu last updated on 03/Aug/20 limx→π/2(1−sinxx2cot2x)? Answered by bemath last updated on 03/Aug/20 setx=π2+♭→4π2×lim♭→01−sin(π2+♭)cot2(π2+♭)=4π2×lim♭→01−cos♭tan2♭=4π2×lim♭→02sin2(♭2)tan2♭=8π2×[lim♭→0sin(♭2)tan♭]2=8π2×14=2π2★ Answered by mathmax by abdo last updated on 03/Aug/20 letg(x)=1−sinxx2cotan2x⇒g(x)=sin2x(1−sinx)x2cos2xchangementx=π2−tgiveg(x)=h(t)=cos2t(1−cost)(π2−t)2sin2t(x→π2⇒t→0)⇒h(t)∼(1−t22)2.t22(π2−t)2t2=12(1−t22π2−t)2⇒limt→0h(t)=12(4π2)=2π2=limx→π2g(x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-171705Next Next post: 0-2x-3-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.