Menu Close

lim-x-pi-2-1-tan-x-2-1-sin-x-1-tan-x-2-pi-2x-3-




Question Number 63918 by raj last updated on 11/Jul/19
lim_(x→π/2) (([1−tan x/2][1−sin x])/([1+tan x/2][π−2x]^3 ))=?
limxπ/2[1tanx/2][1sinx][1+tanx/2][π2x]3=?
Answered by Cmr 237 last updated on 20/Aug/19
posons cette limite egale A  par le developement limite we have:  aux voisinage de (π/2),  tan((x/2))⌢1+(x−(π/2))+o(x)  sinx⌢1−(((x−(π/2))^2 )/2)+o(x)  A(x)⌢((−(x−(π/2))((((x−(π/2))^2 )/2)))/((2+(x−(π/2)))(π−2x)^3 ))+o(x)            =(((1/(16))(π−2x)^3 )/((2+(x−(π/2)))(π−2x)^3 ))+o(x)            =((1/(16))/((2+(x−(π/2)))))+o(x)  now it′s clear that;  lim _(x→(π/2))  A(x)=(1/(32))=A.
posonscettelimiteegaleAparledevelopementlimitewehave:auxvoisinagedeπ2,tan(x2)1+(xπ2)+o(x)sinx1(xπ2)22+o(x)A(x)(xπ2)((xπ2)22)(2+(xπ2))(π2x)3+o(x)=116(π2x)3(2+(xπ2))(π2x)3+o(x)=116(2+(xπ2))+o(x)nowitsclearthat;limxπ2A(x)=132=A.

Leave a Reply

Your email address will not be published. Required fields are marked *