Question Number 163966 by bobhans last updated on 12/Jan/22
$$\:\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{3}}−\sqrt{\mathrm{2tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{10}}}{\mathrm{cot}\:\mathrm{x}}\:=? \\ $$
Answered by cortano1 last updated on 12/Jan/22
$$\:{set}\:{x}=\frac{\pi}{\mathrm{2}}+{h}\Rightarrow\begin{cases}{\mathrm{tan}\:{x}=−\mathrm{cot}\:{h}}\\{\mathrm{cot}\:{x}=−\mathrm{tan}\:{h}}\end{cases} \\ $$$$\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2cot}\:^{\mathrm{2}} {h}+\mathrm{3}}−\sqrt{\mathrm{2cot}\:^{\mathrm{2}} {h}+\mathrm{10}}}{−\mathrm{tan}\:{h}} \\ $$$$\:=\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}+\mathrm{3tan}\:^{\mathrm{2}} {h}}−\sqrt{\mathrm{2}+\mathrm{10tan}\:^{\mathrm{2}} {h}}}{−\mathrm{tan}\:^{\mathrm{2}} {h}} \\ $$$$\:=\:\sqrt{\mathrm{2}}\:×\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+\frac{\mathrm{3tan}\:^{\mathrm{2}} {h}}{\mathrm{2}}}−\sqrt{\mathrm{1}+\mathrm{5tan}\:^{\mathrm{2}} {h}}}{−\mathrm{tan}\:^{\mathrm{2}} {h}} \\ $$$$\:=−\sqrt{\mathrm{2}}\:×\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\frac{\mathrm{3}}{\mathrm{4}}−\frac{\mathrm{5}}{\mathrm{2}}\right)\mathrm{tan}\:^{\mathrm{2}} {h}}{\mathrm{tan}\:^{\mathrm{2}} {h}} \\ $$$$\:=−\sqrt{\mathrm{2}}\:×\left(−\frac{\mathrm{7}}{\mathrm{4}}\right)=\frac{\mathrm{7}\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$