Menu Close

lim-x-pi-2-2tan-2-x-3-2tan-2-x-10-cot-x-




Question Number 163966 by bobhans last updated on 12/Jan/22
      lim_(x→(π/2))  (((√(2tan^2 x+3))−(√(2tan^2 x+10)))/(cot x)) =?
limxπ22tan2x+32tan2x+10cotx=?
Answered by cortano1 last updated on 12/Jan/22
 set x=(π/2)+h⇒ { ((tan x=−cot h)),((cot x=−tan h)) :}   lim_(h→0)  (((√(2cot^2 h+3))−(√(2cot^2 h+10)))/(−tan h))   = lim_(h→0)  (((√(2+3tan^2 h))−(√(2+10tan^2 h)))/(−tan^2 h))   = (√2) ×lim_(h→0)  (((√(1+((3tan^2 h)/2)))−(√(1+5tan^2 h)))/(−tan^2 h))   =−(√2) ×lim_(h→0)  ((((3/4)−(5/2))tan^2 h)/(tan^2 h))   =−(√2) ×(−(7/4))=((7(√2))/4)
setx=π2+h{tanx=cothcotx=tanhlimh02cot2h+32cot2h+10tanh=limh02+3tan2h2+10tan2htan2h=2×limh01+3tan2h21+5tan2htan2h=2×limh0(3452)tan2htan2h=2×(74)=724

Leave a Reply

Your email address will not be published. Required fields are marked *