Menu Close

lim-x-pi-2-4sin-x-6-sin-x-10-pi-2-x-




Question Number 100134 by bemath last updated on 25/Jun/20
lim_(x→(π/2))  ((4sin x−(√(6(√(sin x))+10)))/((π/2)−x)) ?
limxπ24sinx6sinx+10π2x?
Commented by bobhans last updated on 25/Jun/20
set (π/2)−x = t , x =(π/2)−t   lim_(t→0)  ((4cos t−(√(6(√(cos t))+10)))/t) =  lim_(t→0)  ((16cos^2 t−(6(√(cos t))+10))/(8t)) =  lim_(t→0) ((−16sin 2t−((6(−sin t))/(2(√(cos t)))))/8) = 0
setπ2x=t,x=π2tlimt04cost6cost+10t=limt016cos2t(6cost+10)8t=limt016sin2t6(sint)2cost8=0
Commented by Dwaipayan Shikari last updated on 25/Jun/20
lim_(x→(π/2)) ((−4cosx−(((1/2).(3/( (√(sinx))))cosx)/( (√(6(√(sinx))+10)))))/(−1))=0
limxπ24cosx12.3sinxcosx6sinx+101=0
Answered by mathmax by abdo last updated on 25/Jun/20
changement (π/2)−x =t give f(x)=((4sinx−(√(6(√(sinx))+10)))/((π/2)−x))  =((4cost −(√(6(√(cost))+10)))/t)=g(t)  we have cost ∼1−(t^2 /2) ⇒(√(cost))∼1−(t^2 /4) ⇒  6(√(cost))∼6−(3/2)t^2   ⇒(√(6(√(cost))+10))∼(√(16−(3/2)t^2 ))=4(√(1−((3t^2 )/(32))))∼4(1−((3t^2 )/(64))) ⇒  g(t) ∼((4−2t^2 −4+((3t^2 )/(16)))/t) =(−2+(3/(16)))t →0 ⇒lim_(x→(π/2))   f(x) =0
changementπ2x=tgivef(x)=4sinx6sinx+10π2x=4cost6cost+10t=g(t)wehavecost1t22cost1t246cost632t26cost+101632t2=413t2324(13t264)g(t)42t24+3t216t=(2+316)t0limxπ2f(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *