lim-x-pi-2-cos-2-x-2-2-1-cos-x-x-pi-3- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 19271 by Joel577 last updated on 08/Aug/17 limx→π(2−cos2x)22(1+cosx)(x−π)3 Answered by ajfour last updated on 09/Aug/17 =limx→π{[1+sin2(π−x)]1sin2(π−x)}4cos(x2)×sin2(π−x)(π−x)2×−1(π−x)=elimx→π∣4sin(π2−x2)∣×sin2(π−x)(π−x)2×−1(π−x)=e−limx→π∣4sin(π2−x2)∣2(π2−x2)R.H.L.=e2;L.H.L.=e−2=1e2.sothelimitdontexistatx=π. Commented by Joel577 last updated on 09/Aug/17 CanuexplainwithmoredetailSir?Idontunderstandfromthesecondrow Commented by ajfour last updated on 09/Aug/17 sincelimx→0(1+x)1/x=eherewehavelimx→π[1+sin2(π−x)]1sin2(π−x)=e.. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-19268Next Next post: x-x-2-1-3-2-arctan-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.