Menu Close

lim-x-pi-2-cos-2-x-2-2-1-cos-x-x-pi-3-




Question Number 19271 by Joel577 last updated on 08/Aug/17
lim_(x→π)  (2 − cos^2  x)^((2(√(2(1 + cos x))))/((x − π)^3 ))
limxπ(2cos2x)22(1+cosx)(xπ)3
Answered by ajfour last updated on 09/Aug/17
=lim_(x→π) {[1+sin^2 (π−x)]^(1/(sin^2 (π−x))) }^(4cos  ((x/2))×((sin^2 (π−x))/((π−x)^2 ))×((−1)/((π−x))))   =e^(lim_(x→π) ∣4sin   ((π/2)−(x/2))∣×((sin^2 (π−x))/((π−x)^2 ))×((−1)/((π−x))))   =e^(−lim_(x→π)  ((∣4sin ((π/2)−(x/2))∣)/(2((π/2)−(x/2)))))   R.H.L. =e^2   ;   L.H.L. =e^(−2)  =(1/e^2 ) .   so the limit dont exist at x=π .
=limxπ{[1+sin2(πx)]1sin2(πx)}4cos(x2)×sin2(πx)(πx)2×1(πx)=elimxπ4sin(π2x2)×sin2(πx)(πx)2×1(πx)=elimxπ4sin(π2x2)2(π2x2)R.H.L.=e2;L.H.L.=e2=1e2.sothelimitdontexistatx=π.
Commented by Joel577 last updated on 09/Aug/17
Can u explain with more detail Sir?  I dont understand from the second row
CanuexplainwithmoredetailSir?Idontunderstandfromthesecondrow
Commented by ajfour last updated on 09/Aug/17
since lim_(x→0) (1+x)^(1/x) =e  here we have lim_(x→π) [1+sin^2 (π−x)]^(1/(sin^2 (π−x))) =e  ..
sincelimx0(1+x)1/x=eherewehavelimxπ[1+sin2(πx)]1sin2(πx)=e..

Leave a Reply

Your email address will not be published. Required fields are marked *