Menu Close

lim-x-pi-2-cosx-1-sinx-




Question Number 128439 by Study last updated on 07/Jan/21
lim_(x→(π/2)) ((cosx)/(1−sinx))=???
limxπ2cosx1sinx=???
Answered by benjo_mathlover last updated on 07/Jan/21
let x=(π/2)+z ∧ z→0   lim_(z→0)  ((cos ((π/2)+z))/(1−sin (z+(π/2))))=lim_(z→0)  ((−sin z)/(1−cos z))  = lim_(z→0)   ((−sin z)/(2sin^2 (z/2))) = −∞
letx=π2+zz0limz0cos(π2+z)1sin(z+π2)=limz0sinz1cosz=limz0sinz2sin2(z/2)=
Answered by liberty last updated on 08/Jan/21
 lim_(x→π/2)  ((cos^2 (x/2)−sin^2 (x/2))/(sin^2 (x/2)−2sin (x/2)cos (x/2)+cos^2 (x/2)))  = lim_(x→π/2)  (((cos (x/2)−sin (x/2))(cos (x/2)+sin (x/2)))/((cos (x/2)−sin (x/2))^2 ))  = lim_(x→π/2)  ((cos (x/2)+sin (x/2))/(∣cos (x/2)−sin (x/2)∣)) = ((√2)/0) = ∞  or lim_(x→π/2) ((cos ((x/2))+sin ((x/2)))/(∣cos (x/2)−sin (x/2)∣))=−∞
limxπ/2cos2(x/2)sin2(x/2)sin2(x/2)2sin(x/2)cos(x/2)+cos2(x/2)=limxπ/2(cosx2sinx2)(cosx2+sinx2)(cosx2sinx2)2=limxπ/2cosx2+sinx2cosx2sinx2=20=orlimxπ/2cos(x2)+sin(x2)cosx2sinx2=
Answered by MJS_new last updated on 08/Jan/21
limit doesn′t exist because  lim_(x→(π/2)^− )  ((cos x)/(1−sin x)) =+∞ but lim_(x→(π/2)^+ )  ((cos x)/(1−sin x)) =−∞
limitdoesntexistbecauselimxπ2cosx1sinx=+butlimxπ2+cosx1sinx=
Commented by liberty last updated on 08/Jan/21
yes....agree
yes.agree

Leave a Reply

Your email address will not be published. Required fields are marked *