Menu Close

lim-x-pi-2-cosx-cotx-




Question Number 144544 by mohammad17 last updated on 26/Jun/21
lim_(x→(π/2)) (cosx)^(cotx)
limxπ2(cosx)cotx
Commented by mohammad17 last updated on 26/Jun/21
??????
??????
Answered by Olaf_Thorendsen last updated on 26/Jun/21
f(x) = (cosx)^(cotx)   g(x) = f((π/2)−x) = (sinx)^(tanx)   lng(x) = tanx.ln(sinx)  lng(x) ∼_0  xln(x) → 0  ⇒ g(x) →_0  1  lim_(x→(π/2))  f(x) = lim_(x→0)  g(x) = 1
f(x)=(cosx)cotxg(x)=f(π2x)=(sinx)tanxlng(x)=tanx.ln(sinx)lng(x)0xln(x)0g(x)01limxπ2f(x)=limx0g(x)=1
Answered by mathmax by abdo last updated on 26/Jun/21
f(x)=(cosx)^(cotanx)  ⇒f(x)=e^(ctanxlog(cosx))   =_((π/2)−x=t)     e^(cotan((π/2)−t)log(sinx))  =e^(tant log(sint))    we have tant log(sint)=sintlog(sint)×(1/(cost))∼t logt→0 ⇒  lim_(x→(π/2)) f(x)=e^0  =1
f(x)=(cosx)cotanxf(x)=ectanxlog(cosx)=π2x=tecotan(π2t)log(sinx)=etantlog(sint)wehavetantlog(sint)=sintlog(sint)×1costtlogt0limxπ2f(x)=e0=1

Leave a Reply

Your email address will not be published. Required fields are marked *