Menu Close

lim-x-pi-2-sec-2-x-sec-x-tan-x-




Question Number 123375 by bemath last updated on 25/Nov/20
  lim_(x→π/2) (sec^2 x−sec x tan x) =?
limxπ/2(sec2xsecxtanx)=?
Answered by Dwaipayan Shikari last updated on 25/Nov/20
lim_(x→(π/2)) (((1−sinx)/(cos^2 x)))=((2(sin^2 ((π/4)−(x/2))))/(sin^2 ((π/2)−x)))=((2((π/4)−(x/2))^2 )/(((π/2)−x)^2 ))=2.(1/4)=(1/2)
limxπ2(1sinxcos2x)=2(sin2(π4x2))sin2(π2x)=2(π4x2)2(π2x)2=2.14=12
Answered by liberty last updated on 25/Nov/20
  lim_(x→π/2) sec x(sec x−tan x)=   lim_(x→π/2)  (((((1−sin x)/(cos x))))/(cos x)) = lim_(x→π/2)  ((1−sin x)/(cos^2 x))   [ let x=(π/2)+y ; y→0 ]    lim_(y→0)  ((1−cos y)/(sin^2 y)) = lim_(y→0)  ((2sin^2 (y/2))/(sin^2 y))=(1/2)
limsecxπ/2x(secxtanx)=limxπ/2(1sinxcosx)cosx=limxπ/21sinxcos2x[letx=π2+y;y0]limy01cosysin2y=limy02sin2(y/2)sin2y=12

Leave a Reply

Your email address will not be published. Required fields are marked *