Menu Close

lim-x-pi-2-tan-2-x-x-pi-2-cos-2-x-




Question Number 105661 by bobhans last updated on 30/Jul/20
lim_(x→π/2)  tan^2 x (√((x−(π/2))−cos ^2 x)) ?
$$\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\mathrm{tan}\:^{\mathrm{2}} {x}\:\sqrt{\left({x}−\frac{\pi}{\mathrm{2}}\right)−\mathrm{cos}\:\:^{\mathrm{2}} {x}}\:? \\ $$
Commented by Dwaipayan Shikari last updated on 30/Jul/20
limit doesn′t exist
$${limit}\:{doesn}'{t}\:{exist} \\ $$
Answered by bemath last updated on 30/Jul/20
set x = (π/2)+m  lim_(m→0)  ((√(m−sin^2 ((π/2)+m)))/(cot^2  ((π/2)+m)))  lim_(m→0)  ((√(m−cos^2 (m)))/(tan^2 m))= (√m) lim_(m→0) ((√(1−((cos^2 m)/m)))/(tan^2 m))  =(√m) lim_(x→0) ((1−((cos^2 m)/(2m)))/(tan^2 m))= (√m)lim_(m→0) ((1−(1−(m^2 /2))^2 )/)
$${set}\:{x}\:=\:\frac{\pi}{\mathrm{2}}+{m} \\ $$$$\underset{{m}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{m}−\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}+{m}\right)}}{\mathrm{cot}^{\mathrm{2}} \:\left(\frac{\pi}{\mathrm{2}}+{m}\right)} \\ $$$$\underset{{m}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{m}−\mathrm{cos}\:^{\mathrm{2}} \left({m}\right)}}{\mathrm{tan}\:^{\mathrm{2}} {m}}=\:\sqrt{{m}}\:\underset{{m}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{1}−\frac{\mathrm{cos}\:^{\mathrm{2}} {m}}{{m}}}}{\mathrm{tan}\:^{\mathrm{2}} {m}} \\ $$$$=\sqrt{{m}}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\frac{\mathrm{cos}\:^{\mathrm{2}} {m}}{\mathrm{2}{m}}}{\mathrm{tan}\:^{\mathrm{2}} {m}}=\:\sqrt{{m}}\underset{{m}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\left(\mathrm{1}−\frac{{m}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} }{} \\ $$
Answered by Dwaipayan Shikari last updated on 30/Jul/20
lim_(x→(π^− /2)) tan^2 x(√(x−(π/2)−h−cos^2 x))    →i∞   {(h→0)(L.H.S)  (R.H.S)lim_(x→(π^+ /2)) tan^2 x(√(x−(π/2)+h−cos^2 x))→∞  R.H.S≠L.H.S
$$\underset{{x}\rightarrow\frac{\pi^{−} }{\mathrm{2}}} {\mathrm{lim}}{tan}^{\mathrm{2}} {x}\sqrt{{x}−\frac{\pi}{\mathrm{2}}−{h}−{cos}^{\mathrm{2}} {x}}\:\:\:\:\rightarrow{i}\infty\:\:\:\left\{\left({h}\rightarrow\mathrm{0}\right)\left({L}.{H}.{S}\right)\right. \\ $$$$\left({R}.{H}.{S}\right)\underset{{x}\rightarrow\frac{\pi^{+} }{\mathrm{2}}} {\mathrm{lim}}{tan}^{\mathrm{2}} {x}\sqrt{{x}−\frac{\pi}{\mathrm{2}}+{h}−{cos}^{\mathrm{2}} {x}}\rightarrow\infty \\ $$$${R}.{H}.{S}\neq{L}.{H}.{S} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *