Menu Close

lim-x-pi-2-tan-2-x-x-pi-2-cos-2-x-




Question Number 105661 by bobhans last updated on 30/Jul/20
lim_(x→π/2)  tan^2 x (√((x−(π/2))−cos ^2 x)) ?
limxπ/2tan2x(xπ2)cos2x?
Commented by Dwaipayan Shikari last updated on 30/Jul/20
limit doesn′t exist
limitdoesntexist
Answered by bemath last updated on 30/Jul/20
set x = (π/2)+m  lim_(m→0)  ((√(m−sin^2 ((π/2)+m)))/(cot^2  ((π/2)+m)))  lim_(m→0)  ((√(m−cos^2 (m)))/(tan^2 m))= (√m) lim_(m→0) ((√(1−((cos^2 m)/m)))/(tan^2 m))  =(√m) lim_(x→0) ((1−((cos^2 m)/(2m)))/(tan^2 m))= (√m)lim_(m→0) ((1−(1−(m^2 /2))^2 )/)
setx=π2+mlimm0msin2(π2+m)cot2(π2+m)limm0mcos2(m)tan2m=mlimm01cos2mmtan2m=mlimx01cos2m2mtan2m=mlimm01(1m22)2
Answered by Dwaipayan Shikari last updated on 30/Jul/20
lim_(x→(π^− /2)) tan^2 x(√(x−(π/2)−h−cos^2 x))    →i∞   {(h→0)(L.H.S)  (R.H.S)lim_(x→(π^+ /2)) tan^2 x(√(x−(π/2)+h−cos^2 x))→∞  R.H.S≠L.H.S
limxπ2tan2xxπ2hcos2xi{(h0)(L.H.S)(R.H.S)limxπ+2tan2xxπ2+hcos2xR.H.SL.H.S

Leave a Reply

Your email address will not be published. Required fields are marked *