Menu Close

lim-x-pi-3-1-2cosx-sin-x-pi-3-




Question Number 169147 by mathlove last updated on 25/Apr/22
lim_(x→(π/3))  ((1−2cosx)/(sin(x−(π/3))))=?
limxπ312cosxsin(xπ3)=?
Commented by cortano1 last updated on 25/Apr/22
 let x−(π/3)=h   lim_(h→0)  ((1−2cos ((π/3)+h))/(sin h))  = lim_(h→0) ((2sin ((π/3)+h))/(cos h))=2×(1/2)(√3)=(√3)
letxπ3=hlimh012cos(π3+h)sinh=limh02sin(π3+h)cosh=2×123=3
Commented by infinityaction last updated on 25/Apr/22
       p   =     lim_(x→(π/3))  2(((cos (π/3)−cos x)/(sin (x−(π/3)))))        p  =  lim_(x→(π/3)) 2(((2sin (((x+π/3)/2))sin( ((x−π/3)/2)))/(2sin (((x−π/3)/2))cos (((x−π/3)/2)))))       p     =   2sin (((2π)/3))       p   =    2×((√3)/2)   =     (√3)
p=limxπ32(cosπ3cosxsin(xπ3))p=lim2xπ3(2sin(x+π/32)sin(xπ/32)2sin(xπ/32)cos(xπ/32))p=2sin(2π3)p=2×32=3

Leave a Reply

Your email address will not be published. Required fields are marked *