Menu Close

lim-x-pi-4-4-2-cos-x-sin-x-5-cos-x-sin-x-2-




Question Number 119725 by bemath last updated on 26/Oct/20
 lim_(x→(π/4))  ((4(√2)−(cos x+sin x)^5 )/((cos x−sin x)^2 )) =?
limxπ442(cosx+sinx)5(cosxsinx)2=?
Commented by bemath last updated on 26/Oct/20
compare via L′Hopital  lim_(x→(π/4))  ((−5(cos x+sin x)^4 (−sin x+cos x))/(2(cos x−sin x)(−cos x−sin x)))   lim_(x→(π/4))  ((−5(cos x+sin x)^4 (cos x−sin x))/(−2(cos x−sin x)(cos x+sin x)))=   lim_(x→(π/4))  (5/2)(cos x+sin x)^3  =   (5/2)((√2))^3  = (5/2)×2(√2) = 5(√2)
compareviaLHopitallimxπ45(cosx+sinx)4(sinx+cosx)2(cosxsinx)(cosxsinx)limxπ45(cosx+sinx)4(cosxsinx)2(cosxsinx)(cosx+sinx)=limxπ452(cosx+sinx)3=52(2)3=52×22=52
Answered by benjo_mathlover last updated on 26/Oct/20
 lim_(x→(π/4))  ((4(√2)−4(√2) sin^5 (x+(π/4)))/(1−sin 2x)) =  [ let x = (π/4)+z ]  lim_(z→0)  ((4(√2)(1−sin^5 (z+(π/2))))/(1−sin (2z+(π/2)))) =  lim_(z→0)  ((4(√2) (1−cos^5 z))/(1−cos 2z)) = lim_(z→0)  ((4(√2) (1−(1−(z^2 /2))^5 ))/(1−(1−((4z^2 )/2))))  = lim_(z→0)  ((4(√2) (1−(1−((5z^2 )/2))))/(2z^2 )) = lim_(z→0)  ((2(√2) (((5z^2 )/2)))/z^2 )= 5(√2)
limxπ44242sin5(x+π4)1sin2x=[letx=π4+z]limz042(1sin5(z+π2))1sin(2z+π2)=limz042(1cos5z)1cos2z=limz042(1(1z22)5)1(14z22)=limz042(1(15z22))2z2=limz022(5z22)z2=52
Answered by Dwaipayan Shikari last updated on 26/Oct/20
lim_(x→(π/4)) ((4(√2)(1−cos^5 ((π/4)−x)))/((cosx−sinx)^2 ))  lim_(x→(π/4)) ((4(√2)(1−cos^5 ((π/4)−x)))/(2cos^2 ((π/4)+x)))  lim_(x→(π/4)) 2(√2)  ((1−cos^5 ((π/4)−x))/(sin^2 ((π/4)−x)))  lim_(x→(π/4)) 2(√2)(1+cos((π/4)−x)+cos^2 ((π/4)−x)+cos^3 ((π/4)−x)+cos^4 ((π/4)−x))((1−cos((π/4)−x))/(sin^2 ((π/4)−x)))  2(√2)(1+1+1+1+1)((2((π/4)−x)^2 )/(4.((π/4)−x)^2 ))=5(√2)
limxπ442(1cos5(π4x))(cosxsinx)2limxπ442(1cos5(π4x))2cos2(π4+x)lim2xπ421cos5(π4x)sin2(π4x)lim2xπ42(1+cos(π4x)+cos2(π4x)+cos3(π4x)+cos4(π4x))1cos(π4x)sin2(π4x)22(1+1+1+1+1)2(π4x)24.(π4x)2=52
Answered by Bird last updated on 26/Oct/20
f(x)=((4(√2)−(cosx+sinx)^5 )/((cosx−sinx)^2 ))  ⇒f(x)=((4(√2)−((√2)cos(x−(π/4))^5 )/(((√2)cos(x+(π/4)))^2 ))  =((4(√2)−4(√2)cos^5 (x−(π/4)))/(2cos^2 (x+(π/4))))  =_(x−(π/4)=t)    2(√2)×((1−cos^5 t)/(cos^2 (t+(π/2))))=f(t+(π/4))    =2(√2)×((1−cos^5 t)/(sin^2 t))  =2(√2)×(((1−cost)(1+cost +cos^2 t+cos^3 t+cos^4 t))/(sin^2 t))  f(t+(π/4))∼2(√2)×((t^2 /2)/t^2 )(1+cost+...+cos^4 t)  =(√2)(1+cost+...+cos^4 t) ⇒  lim_(t→0) f(t+(π/4))=5(√2)=lim_(x→(π/4))   f(x)
f(x)=42(cosx+sinx)5(cosxsinx)2f(x)=42(2cos(xπ4)5(2cos(x+π4))2=4242cos5(xπ4)2cos2(x+π4)=xπ4=t22×1cos5tcos2(t+π2)=f(t+π4)=22×1cos5tsin2t=22×(1cost)(1+cost+cos2t+cos3t+cos4t)sin2tf(t+π4)22×t22t2(1+cost++cos4t)=2(1+cost++cos4t)limt0f(t+π4)=52=limxπ4f(x)

Leave a Reply

Your email address will not be published. Required fields are marked *