Question Number 119725 by bemath last updated on 26/Oct/20
$$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{4}\sqrt{\mathrm{2}}−\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{5}} }{\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)^{\mathrm{2}} }\:=? \\ $$
Commented by bemath last updated on 26/Oct/20
$${compare}\:{via}\:{L}'{Hopital} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{−\mathrm{5}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{4}} \left(−\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)}{\mathrm{2}\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)\left(−\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)} \\ $$$$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{−\mathrm{5}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{4}} \left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)}{−\mathrm{2}\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)}= \\ $$$$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{5}}{\mathrm{2}}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{3}} \:= \\ $$$$\:\frac{\mathrm{5}}{\mathrm{2}}\left(\sqrt{\mathrm{2}}\right)^{\mathrm{3}} \:=\:\frac{\mathrm{5}}{\mathrm{2}}×\mathrm{2}\sqrt{\mathrm{2}}\:=\:\mathrm{5}\sqrt{\mathrm{2}}\: \\ $$
Answered by benjo_mathlover last updated on 26/Oct/20
$$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{4}\sqrt{\mathrm{2}}−\mathrm{4}\sqrt{\mathrm{2}}\:\mathrm{sin}\:^{\mathrm{5}} \left({x}+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}\:= \\ $$$$\left[\:{let}\:{x}\:=\:\frac{\pi}{\mathrm{4}}+{z}\:\right] \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4}\sqrt{\mathrm{2}}\left(\mathrm{1}−\mathrm{sin}\:^{\mathrm{5}} \left({z}+\frac{\pi}{\mathrm{2}}\right)\right)}{\mathrm{1}−\mathrm{sin}\:\left(\mathrm{2}{z}+\frac{\pi}{\mathrm{2}}\right)}\:= \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4}\sqrt{\mathrm{2}}\:\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{5}} {z}\right)}{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{z}}\:=\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4}\sqrt{\mathrm{2}}\:\left(\mathrm{1}−\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{5}} \right)}{\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{4}{z}^{\mathrm{2}} }{\mathrm{2}}\right)} \\ $$$$=\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4}\sqrt{\mathrm{2}}\:\left(\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{5}{z}^{\mathrm{2}} }{\mathrm{2}}\right)\right)}{\mathrm{2}{z}^{\mathrm{2}} }\:=\:\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\sqrt{\mathrm{2}}\:\left(\frac{\mathrm{5}{z}^{\mathrm{2}} }{\mathrm{2}}\right)}{{z}^{\mathrm{2}} }=\:\mathrm{5}\sqrt{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 26/Oct/20
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\frac{\mathrm{4}\sqrt{\mathrm{2}}\left(\mathrm{1}−{cos}^{\mathrm{5}} \left(\frac{\pi}{\mathrm{4}}−{x}\right)\right)}{\left({cosx}−{sinx}\right)^{\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\frac{\mathrm{4}\sqrt{\mathrm{2}}\left(\mathrm{1}−{cos}^{\mathrm{5}} \left(\frac{\pi}{\mathrm{4}}−{x}\right)\right)}{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}+{x}\right)} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}2}\sqrt{\mathrm{2}}\:\:\frac{\mathrm{1}−{cos}^{\mathrm{5}} \left(\frac{\pi}{\mathrm{4}}−{x}\right)}{{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−{x}\right)} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}2}\sqrt{\mathrm{2}}\left(\mathrm{1}+{cos}\left(\frac{\pi}{\mathrm{4}}−{x}\right)+{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−{x}\right)+{cos}^{\mathrm{3}} \left(\frac{\pi}{\mathrm{4}}−{x}\right)+{cos}^{\mathrm{4}} \left(\frac{\pi}{\mathrm{4}}−{x}\right)\right)\frac{\mathrm{1}−{cos}\left(\frac{\pi}{\mathrm{4}}−{x}\right)}{{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−{x}\right)} \\ $$$$\mathrm{2}\sqrt{\mathrm{2}}\left(\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}\right)\frac{\mathrm{2}\left(\frac{\pi}{\mathrm{4}}−{x}\right)^{\mathrm{2}} }{\mathrm{4}.\left(\frac{\pi}{\mathrm{4}}−{x}\right)^{\mathrm{2}} }=\mathrm{5}\sqrt{\mathrm{2}} \\ $$$$ \\ $$
Answered by Bird last updated on 26/Oct/20
$${f}\left({x}\right)=\frac{\mathrm{4}\sqrt{\mathrm{2}}−\left({cosx}+{sinx}\right)^{\mathrm{5}} }{\left({cosx}−{sinx}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{\mathrm{4}\sqrt{\mathrm{2}}−\left(\sqrt{\mathrm{2}}{cos}\left({x}−\frac{\pi}{\mathrm{4}}\right)^{\mathrm{5}} \right.}{\left(\sqrt{\mathrm{2}}{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}\sqrt{\mathrm{2}}−\mathrm{4}\sqrt{\mathrm{2}}{cos}^{\mathrm{5}} \left({x}−\frac{\pi}{\mathrm{4}}\right)}{\mathrm{2}{cos}^{\mathrm{2}} \left({x}+\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=_{{x}−\frac{\pi}{\mathrm{4}}={t}} \:\:\:\mathrm{2}\sqrt{\mathrm{2}}×\frac{\mathrm{1}−{cos}^{\mathrm{5}} {t}}{{cos}^{\mathrm{2}} \left({t}+\frac{\pi}{\mathrm{2}}\right)}={f}\left({t}+\frac{\pi}{\mathrm{4}}\right) \\ $$$$ \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}×\frac{\mathrm{1}−{cos}^{\mathrm{5}} {t}}{{sin}^{\mathrm{2}} {t}} \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}×\frac{\left(\mathrm{1}−{cost}\right)\left(\mathrm{1}+{cost}\:+{cos}^{\mathrm{2}} {t}+{cos}^{\mathrm{3}} {t}+{cos}^{\mathrm{4}} {t}\right)}{{sin}^{\mathrm{2}} {t}} \\ $$$${f}\left({t}+\frac{\pi}{\mathrm{4}}\right)\sim\mathrm{2}\sqrt{\mathrm{2}}×\frac{\frac{{t}^{\mathrm{2}} }{\mathrm{2}}}{{t}^{\mathrm{2}} }\left(\mathrm{1}+{cost}+…+{cos}^{\mathrm{4}} {t}\right) \\ $$$$=\sqrt{\mathrm{2}}\left(\mathrm{1}+{cost}+…+{cos}^{\mathrm{4}} {t}\right)\:\Rightarrow \\ $$$${lim}_{{t}\rightarrow\mathrm{0}} {f}\left({t}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{5}\sqrt{\mathrm{2}}={lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\:{f}\left({x}\right) \\ $$$$ \\ $$