lim-x-pi-4-pi-8-2-x-tan-x-sin-x-cos-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 159142 by tounghoungko last updated on 13/Nov/21 limx→−π4π8−2x.tanxsinx+cosx=? Commented by cortano last updated on 14/Nov/21 limx→−π4πcosx−4xsinx82sin(x+π4)cosx=122limx→−π4πcosx−4xsinxsin(x+π4)=122limx→−π4−πsinx−4(sinx+xcosx)cos(x+π4)=122(π2+22+π21)=122(22+π2)=2+π2― Answered by FongXD last updated on 13/Nov/21 L=limx→−π4π8(tanx+1)−(π8+2x)tanx2(sinπ4sinx+cosπ4cosx)⇔L=14limx→−π4πsin(x+π4)cosxcosπ4−(π+4x)tanxcos(x−π4)⇔L=14limx→−π4πsin(x+π4)−(π+4x)tanxcosxcosπ4sin(x+π4)×1cosxcosπ4⇔L=π2−12limx→−π4π+4xsin(x+π4)×tanxcosxcosπ4⇔L=π2+14limx→−π4π+4xsin(x+π4)putt=x+π4,ifx→−π4,⇒t→0weget:L=π2+14limt→04tsint=π2+14(4×1)=π2+1so.L=limx→−π4π8−2xtanxsinx+cosx=π2+1 Answered by tounghoungko last updated on 14/Nov/21 =12limx→−π4πcosx−4xsinx2sin(x+π4)=122limx→0πcos(x−π4)−(4x−π)sin(x−π4)sinx=122limx→0(π2−22x)sinx+22xcosxsinx=122limx→0(π2−22x+22cosx)=π2+2222=π2+1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-give-I-a-0-t-a-1-1-t-dt-by-using-Residus-theorem-find-the-value-of-I-a-with-0-lt-a-lt-1-Next Next post: Question-159143 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.