Menu Close

lim-x-pi-4-sec-2-x-2-tan-x-2cos-x-2sin-x-




Question Number 190824 by cortano12 last updated on 12/Apr/23
  lim_(x→(π/4))  ((sec^2 x−2(√(tan x)))/(2cos x−2sin x)) =?
limxπ4sec2x2tanx2cosx2sinx=?
Commented by 0670322918 last updated on 12/Apr/23
(1/2)lim_(x→(π/4)) ((tan^2 (x)+1−2+2−2(√(tan(x))))/(cos(x)[1−tan(x)]))=  cos((π/4))=((√2)/2)  (1/( (√2)))lim_(x→(π/4)) [((tan^2 (x)−1)/(1−tan(x)))+2((1−(√(tan(x))))/(1−tan(x)))]=  (1/( (√2)))[lim_(x→+(π/4)) [2((1−(√(tan(x))))/([1−(√(tan(x)))][1+(√(tan(x)))))−(([tan(x)−1][tan(x)+1])/(tan(x)−1))]=  (1/( (√2)))(lim_(x→(π/4)) [(2/(1+(√(tan(x)))))−tan(x)−1])=(1/( (√2)))[1−1−1]=−((√2)/2)  lim_(x→(π/4)) ((sec^2 (x)−2(√(tan(x))))/(2cos(x)−2sin(x)))=−((√2)/2)
12limxπ4tan2(x)+12+22tan(x)cos(x)[1tan(x)]=cos(π4)=2212limxπ4[tan2(x)11tan(x)+21tan(x)1tan(x)]=12[limx+π4[21tan(x)[1tan(x)][1+tan(x)[tan(x)1][tan(x)+1]tan(x)1]=12(limxπ4[21+tan(x)tan(x)1])=12[111]=22limxπ4sec2(x)2tan(x)2cos(x)2sin(x)=22
Commented by cortano12 last updated on 13/Apr/23
ans (1/( (√2)))
ans12

Leave a Reply

Your email address will not be published. Required fields are marked *