lim-x-pi-4-sec-2-x-2-tan-x-2cos-x-2sin-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 190824 by cortano12 last updated on 12/Apr/23 limx→π4sec2x−2tanx2cosx−2sinx=? Commented by 0670322918 last updated on 12/Apr/23 12limx→π4tan2(x)+1−2+2−2tan(x)cos(x)[1−tan(x)]=cos(π4)=2212limx→π4[tan2(x)−11−tan(x)+21−tan(x)1−tan(x)]=12[limx→+π4[21−tan(x)[1−tan(x)][1+tan(x)−[tan(x)−1][tan(x)+1]tan(x)−1]=12(limx→π4[21+tan(x)−tan(x)−1])=12[1−1−1]=−22limx→π4sec2(x)−2tan(x)2cos(x)−2sin(x)=−22 Commented by cortano12 last updated on 13/Apr/23 ans12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-125288Next Next post: Question-125295 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.