Question Number 105126 by bemath last updated on 26/Jul/20
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}−\sqrt{\mathrm{2}}\mathrm{tan}\:{x}}{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}} \\ $$
Answered by Dwaipayan Shikari last updated on 26/Jul/20
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\frac{\mathrm{cosx}−\mathrm{sinx}−\sqrt{\mathrm{2}}\mathrm{sec}^{\mathrm{2}} \mathrm{x}}{\mathrm{cosx}+\mathrm{sinx}}=\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\sqrt{\mathrm{2}}.\mathrm{2}}{\:\sqrt{\mathrm{2}}}=−\mathrm{2} \\ $$
Answered by bramlex last updated on 26/Jul/20
$$\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\:=\:\sqrt{\mathrm{2}}\:\mathrm{sin}\:\:\left({x}+\frac{\pi}{\mathrm{4}}\right) \\ $$$$\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\:=\:\sqrt{\mathrm{2}}\:\mathrm{sin}\:\:\left({x}−\frac{\pi}{\mathrm{4}}\right) \\ $$$${set}\:{x}\:=\:{w}+\frac{\pi}{\mathrm{4}} \\ $$$$\underset{{w}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left({w}+\frac{\pi}{\mathrm{2}}\right)−\sqrt{\mathrm{2}}\:\mathrm{tan}\:\left({w}+\frac{\pi}{\mathrm{4}}\right)}{\:\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left({w}\right)} \\ $$$$\:\underset{{w}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{w}−\left\{\frac{\mathrm{1}+\mathrm{tan}\:{w}}{\mathrm{1}−\mathrm{tan}\:{w}}\right\}}{\mathrm{sin}\:{w}} \\ $$$$\underset{{w}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:{w}−\mathrm{sin}\:{w}−\mathrm{1}−\mathrm{tan}\:{w}}{\mathrm{sin}\:{w}\left(\mathrm{1}−\mathrm{tan}\:{w}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{cos}\:{w}−\mathrm{1}\right)−\mathrm{sin}\:{w}−\mathrm{tan}\:{w}}{\mathrm{sin}\:{w}\left(\mathrm{1}−\mathrm{tan}\:{w}\right)} \\ $$$$\underset{{w}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\left(\mathrm{1}−\frac{{w}^{\mathrm{2}} }{\mathrm{2}}\right)−\mathrm{1}\right)−\left({w}−\frac{{w}^{\mathrm{3}} }{\mathrm{6}}\right)−\left({w}+\frac{{w}^{\mathrm{3}} }{\mathrm{3}}\right)}{\left({w}−\frac{{w}^{\mathrm{3}} }{\mathrm{6}}\right)\left(\mathrm{1}−\left({w}+\frac{{w}^{\mathrm{3}} }{\mathrm{3}}\right)\right)} \\ $$$$\underset{{w}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\frac{{w}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}{w}−\frac{{w}^{\mathrm{3}} }{\mathrm{6}}}{\left({w}−\frac{{w}^{\mathrm{3}} }{\mathrm{6}}\right)\left(\mathrm{1}−{w}−\frac{{w}^{\mathrm{3}} }{\mathrm{3}}\right)}\:=\:−\mathrm{2}\: \\ $$