Question Number 175362 by cortano1 last updated on 28/Aug/22
$$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)}\:=? \\ $$
Commented by infinityaction last updated on 28/Aug/22
$$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{−\sqrt{\mathrm{2}}\mathrm{sin}\left(\pi/\mathrm{4}−{x}\right)}{\mathrm{sin}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)\mathrm{sec}\:\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)\:\:} \\ $$$$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{−\mathrm{2}\sqrt{\mathrm{2}}\cancel{\mathrm{sin}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)}\mathrm{cos}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)\:\:}{\cancel{\mathrm{sin}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)}} \\ $$$$\:\:\:\:−\mathrm{2}\sqrt{\mathrm{2}} \\ $$
Commented by CElcedricjunior last updated on 28/Aug/22