Menu Close

lim-x-pi-6-1-2sin-x-1-3-tan-x-




Question Number 117412 by bobhans last updated on 11/Oct/20
lim_(x→(π/6))  ((1−2sin x)/( 1−(√3) tan x)) = ?
limxπ612sinx13tanx=?
Commented by Lordose last updated on 11/Oct/20
you edited the question.?
youeditedthequestion.?
Commented by bobhans last updated on 11/Oct/20
yes. typo
yes.typo
Answered by Lordose last updated on 11/Oct/20
((1−2((1/2)))/( (√3)−((√3)/3))) = (0/((2(√3))/3)) = 0
12(12)333=0233=0
Answered by Olaf last updated on 11/Oct/20
lim_(x→(π/6)) ((−2cosx)/(−(√3)(1+tan^2 x))) = ((−2((√3)/2))/(−(√3)(1+((1/( (√3))))^2 )))  = (3/4)  (Hospital′s rule)
limxπ62cosx3(1+tan2x)=2323(1+(13)2)=34(Hospitalsrule)
Answered by bemath last updated on 11/Oct/20
 lim_(x→(π/6))  ((1−2sin x)/(1−(√3) tan x)) =?  Solution:  Without L′Hopital  letting w = x−(π/6)   lim_(w→0)  ((1−2sin (w+(π/6)))/(1−(√3) tan (w+(π/6)))) =   lim_(w→0) ((1−2(((√3)/2) sin w+(1/2)cos w))/(1−(√3)((((1/( (√3)))+tan w)/(1−(1/( (√3)))tan w))))) =  lim_(w→0) ((1−(√3) sin w−cos w)/(1−(√3)(((1+(√3) tan w)/( (√3)−tan w))))) =  lim_(w→0)  ((((√3)−tan w)(1−cos w−(√3) sin w))/( (√3)−tan w−(√3)−3 tan w)) =  (√3) lim_(w→0)  ((2sin^2 ((1/2)w)−(√3) sin w)/(−4tan w)) =  (√3) lim_(w→0)  ((2sin ((1/2)w) (sin ((1/2)w)−(√3) cos ((1/2)w)))/(−4tan w))=  ((√3)/(−4)) ×(−(√3)) = (3/4)
limxπ612sinx13tanx=?Solution:WithoutLHopitallettingw=xπ6limw012sin(w+π6)13tan(w+π6)=limw012(32sinw+12cosw)13(13+tanw113tanw)=limw013sinwcosw13(1+3tanw3tanw)=limw0(3tanw)(1cosw3sinw)3tanw33tanw=3limw02sin2(12w)3sinw4tanw=3limw02sin(12w)(sin(12w)3cos(12w))4tanw=34×(3)=34
Commented by TANMAY PANACEA last updated on 11/Oct/20
li_(x→(π/6) (/))   lim_(x→(π/6))   (2/( (√3)))(((sin(π/6)−sinx)/(tan(π/6)−tanx)))  (2/( (√3)))lim_(x→(π/6))  ((2cos((((π/6)+x)/2))sin((((π/6)−x)/2)))/((sin((π/6)−x))/(cos((π/6))cosx)))  (2/( (√3)))lim_(x→(π/6))  2cos(π/6)cosx×cos((((π/6)+x)/2))sin((((π/6)−x)/2))×(1/(2sin((((π/6)−x)/2))×coz((((π/6)−x)/2))))  =(2/( (√3)))×((√3)/2)×((√3)/2)×((√3)/2)×(1/1)=(3/4)
lixπ6limxπ623(sinπ6sinxtanπ6tanx)23limxπ62cos(π6+x2)sin(π6x2)sin(π6x)cos(π6)cosx23limxπ62cosπ6cosx×cos(π6+x2)sin(π6x2)×12sin(π6x2)×coz(π6x2)=23×32×32×32×11=34

Leave a Reply

Your email address will not be published. Required fields are marked *