Menu Close

lim-x-pi-7-2sin-x-7-2sin-x-tan-x-




Question Number 124273 by bramlexs22 last updated on 02/Dec/20
  lim_(x→π)  (((√(7+2sin x)) −(√(7−2sin x)))/(tan x)) = ?
limxπ7+2sinx72sinxtanx=?
Answered by Dwaipayan Shikari last updated on 02/Dec/20
lim_(x→π) (((√(7+2(π−x)))−(√(7−2π+2x)))/(π−x))=(√7)((((√(1+(2/7)(π−x)))−(√(1−(2/7)(π−x))))/(π−x)))      =(√7)(((1+(1/7)(π−x)−1+(1/7)(π−x))/(π−x)))cosx=−(√7) ((2/7))=−(2/( (√7)))
limxπ7+2(πx)72π+2xπx=7(1+27(πx)127(πx)πx)=7(1+17(πx)1+17(πx)πx)cosx=7(27)=27
Answered by liberty last updated on 02/Dec/20
 lim_(x→π)  (((7+2sin x)−(7−2sin x))/(((√(7+2sin x)) +(√(7−2sin x)) ).tan x)) =   lim_(x→π)  (1/( (√(7+2sin x)) +(√(7−2sin x)))) × lim_(x→π)  ((4sin x)/(tan x))  = (1/(2(√7))) × lim_(x→π)  4sin x(((cos x)/(sin x)))   = (1/(2(√7))) × (−4)=−(2/( (√7))).
limxπ(7+2sinx)(72sinx)(7+2sinx+72sinx).tanx=limxπ17+2sinx+72sinx×limxπ4sinxtanx=127×limxπ4sinx(cosxsinx)=127×(4)=27.

Leave a Reply

Your email address will not be published. Required fields are marked *