lim-x-pi-7-2sin-x-7-2sin-x-tan-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 124273 by bramlexs22 last updated on 02/Dec/20 limx→π7+2sinx−7−2sinxtanx=? Answered by Dwaipayan Shikari last updated on 02/Dec/20 limx→π7+2(π−x)−7−2π+2xπ−x=7(1+27(π−x)−1−27(π−x)π−x)=7(1+17(π−x)−1+17(π−x)π−x)cosx=−7(27)=−27 Answered by liberty last updated on 02/Dec/20 limx→π(7+2sinx)−(7−2sinx)(7+2sinx+7−2sinx).tanx=limx→π17+2sinx+7−2sinx×limx→π4sinxtanx=127×limx→π4sinx(cosxsinx)=127×(−4)=−27. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-189807Next Next post: Question-189808 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.