Menu Close

lim-x-pi-7-2sin-x-7-2sin-x-tan-x-




Question Number 124273 by bramlexs22 last updated on 02/Dec/20
  lim_(x→π)  (((√(7+2sin x)) −(√(7−2sin x)))/(tan x)) = ?
$$\:\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{7}+\mathrm{2sin}\:{x}}\:−\sqrt{\mathrm{7}−\mathrm{2sin}\:{x}}}{\mathrm{tan}\:{x}}\:=\:?\: \\ $$
Answered by Dwaipayan Shikari last updated on 02/Dec/20
lim_(x→π) (((√(7+2(π−x)))−(√(7−2π+2x)))/(π−x))=(√7)((((√(1+(2/7)(π−x)))−(√(1−(2/7)(π−x))))/(π−x)))      =(√7)(((1+(1/7)(π−x)−1+(1/7)(π−x))/(π−x)))cosx=−(√7) ((2/7))=−(2/( (√7)))
$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\frac{\sqrt{\mathrm{7}+\mathrm{2}\left(\pi−{x}\right)}−\sqrt{\mathrm{7}−\mathrm{2}\pi+\mathrm{2}{x}}}{\pi−{x}}=\sqrt{\mathrm{7}}\left(\frac{\sqrt{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{7}}\left(\pi−{x}\right)}−\sqrt{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{7}}\left(\pi−{x}\right)}}{\pi−{x}}\right)\:\:\:\: \\ $$$$=\sqrt{\mathrm{7}}\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{7}}\left(\pi−{x}\right)−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{7}}\left(\pi−{x}\right)}{\pi−{x}}\right){cosx}=−\sqrt{\mathrm{7}}\:\left(\frac{\mathrm{2}}{\mathrm{7}}\right)=−\frac{\mathrm{2}}{\:\sqrt{\mathrm{7}}} \\ $$
Answered by liberty last updated on 02/Dec/20
 lim_(x→π)  (((7+2sin x)−(7−2sin x))/(((√(7+2sin x)) +(√(7−2sin x)) ).tan x)) =   lim_(x→π)  (1/( (√(7+2sin x)) +(√(7−2sin x)))) × lim_(x→π)  ((4sin x)/(tan x))  = (1/(2(√7))) × lim_(x→π)  4sin x(((cos x)/(sin x)))   = (1/(2(√7))) × (−4)=−(2/( (√7))).
$$\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\left(\mathrm{7}+\mathrm{2sin}\:{x}\right)−\left(\mathrm{7}−\mathrm{2sin}\:{x}\right)}{\left(\sqrt{\mathrm{7}+\mathrm{2sin}\:{x}}\:+\sqrt{\mathrm{7}−\mathrm{2sin}\:{x}}\:\right).\mathrm{tan}\:{x}}\:= \\ $$$$\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{2sin}\:{x}}\:+\sqrt{\mathrm{7}−\mathrm{2sin}\:{x}}}\:×\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mathrm{4sin}\:{x}}{\mathrm{tan}\:{x}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{7}}}\:×\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\mathrm{4sin}\:{x}\left(\frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}\right) \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{7}}}\:×\:\left(−\mathrm{4}\right)=−\frac{\mathrm{2}}{\:\sqrt{\mathrm{7}}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *