Menu Close

lim-x-pi-8-cot-4x-cos-4x-pi-8x-3-




Question Number 115195 by bemath last updated on 24/Sep/20
lim_(x→(π/8))  ((cot 4x−cos 4x)/((π−8x)^3 )) ?
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{8}}} {\mathrm{lim}}\:\frac{\mathrm{cot}\:\mathrm{4}{x}−\mathrm{cos}\:\mathrm{4}{x}}{\left(\pi−\mathrm{8}{x}\right)^{\mathrm{3}} }\:?\: \\ $$
Answered by bobhans last updated on 24/Sep/20
let x = (π/8)+p ; p→0  lim_(p→0)  ((cot (4p+(π/2))−cos (4p+(π/2)))/((−8p)^3 )) =  lim_(p→0)  ((−tan 4p+sin 4p)/(−512p^3 )) =   lim_(p→0)  ((tan 4p−sin 4p)/(512p^3 )) = lim_(p→0)  ((tan 4p(1−cos 4p))/(512p^3 ))  = ((4×8)/(64×8)) = (1/(16))
$${let}\:{x}\:=\:\frac{\pi}{\mathrm{8}}+{p}\:;\:{p}\rightarrow\mathrm{0} \\ $$$$\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cot}\:\left(\mathrm{4}{p}+\frac{\pi}{\mathrm{2}}\right)−\mathrm{cos}\:\left(\mathrm{4}{p}+\frac{\pi}{\mathrm{2}}\right)}{\left(−\mathrm{8}{p}\right)^{\mathrm{3}} }\:= \\ $$$$\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{tan}\:\mathrm{4}{p}+\mathrm{sin}\:\mathrm{4}{p}}{−\mathrm{512}{p}^{\mathrm{3}} }\:=\: \\ $$$$\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{4}{p}−\mathrm{sin}\:\mathrm{4}{p}}{\mathrm{512}{p}^{\mathrm{3}} }\:=\:\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{4}{p}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{4}{p}\right)}{\mathrm{512}{p}^{\mathrm{3}} } \\ $$$$=\:\frac{\mathrm{4}×\mathrm{8}}{\mathrm{64}×\mathrm{8}}\:=\:\frac{\mathrm{1}}{\mathrm{16}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *