Menu Close

lim-x-pi-cos-x-sin-2x-1-x-2-pi-2-A-1-2pi-C-1-B-1-pi-D-Does-Not-exist-




Question Number 187270 by MikeH last updated on 15/Feb/23
lim_(x→π) ((cos x + sin(2x) +1)/(x^2 −π^2 )) =  A. (1/(2π))         C. 1  B. (1/π)         D. Does Not exist
limxπcosx+sin(2x)+1x2π2=A.12πC.1B.1πD.DoesNotexist
Answered by horsebrand11 last updated on 15/Feb/23
 lim_(x→π)  ((1−cos (π−x)−sin 2(π−x))/((x+π)(x−π)))  = (1/(2π)) .lim_(x→0)  ((1−cos x−sin 2x)/(−x))  =−(1/(2π)) [ lim_(x→0)  ((1−cos x)/x) −lim_(x→0)  ((sin 2x)/x) ]  =−(1/(2π)) [ 0−2 ]=(1/π)
limxπ1cos(πx)sin2(πx)(x+π)(xπ)=12π.limx01cosxsin2xx=12π[limx01cosxxlimx0sin2xx]=12π[02]=1π
Commented by MikeH last updated on 16/Feb/23
thanks
thanks
Answered by Frix last updated on 15/Feb/23
Simply use l′Ho^� pital ⇒ answer is (1/π)
SimplyuselHopital^answeris1π
Answered by CElcedricjunior last updated on 15/Feb/23
lim_(x→𝛑) ((cosx+sin(2x)+1)/(x^2 −𝛑^2 ))=(0/0)=FI ■Moivre  lim_(x→𝛑) ((−sinx+2cos(2x))/(2x))=(2/(2𝛑))=(1/𝛑) ★cedric junior  B)(1/𝛑)
limxπcosx+sin(2x)+1x2π2=00=FI◼Moivrelimxπsinx+2cos(2x)2x=22π=1πcedricjuniorB)1π

Leave a Reply

Your email address will not be published. Required fields are marked *