Menu Close

lim-x-pi-e-sin-x-1-x-pi-




Question Number 80670 by jagoll last updated on 05/Feb/20
lim_(x→π)  ((e^(sin x) −1)/(x−π))=?
limxπesinx1xπ=?
Commented by jagoll last updated on 05/Feb/20
lim_(x→π)  ((cos x.e^(sin x) )/1)= −1
limxπcosx.esinx1=1
Commented by abdomathmax last updated on 05/Feb/20
let f(x)=((e^(sinx) −1)/(x−π))  changement x−π=t give  f(x)=g(t)=((e^(sin(π+t)) −1)/t) =((e^(−sint) −1)/t)  ∼ ((e^(−t) −1)/t) ∼((1−t−1)/t)=−1 ⇒lim_(x→π)   f(x)=−1
letf(x)=esinx1xπchangementxπ=tgivef(x)=g(t)=esin(π+t)1t=esint1tet1t1t1t=1limxπf(x)=1
Answered by $@ty@m123 last updated on 05/Feb/20
Let x−π=t  x=π+t  As x→π, t=0  lim_(t→0)   ((e^(sin (π+t)) −1)/t)  lim_(t→0)   ((e^(−sin t) −1)/t)  lim_(t→0)   ((1−sin t+((sin^2 t)/(2!))+.....−1)/t)  lim_(t→0)   ((−sint)/t)  =−1
Letxπ=tx=π+tAsxπ,t=0limt0esin(π+t)1tlimt0esint1tlimt01sint+sin2t2!+..1tlimt0sintt=1

Leave a Reply

Your email address will not be published. Required fields are marked *