Menu Close

lim-x-pi-picos2x-x-1-cosx-




Question Number 169182 by mathlove last updated on 25/Apr/22
lim_(x→π) ((πcos2x−x)/(1+cosx))=?
limxππcos2xx1+cosx=?
Commented by infinityaction last updated on 25/Apr/22
use l hospital rule      p   =   lim_(x→π)  ((−2πsin 2x − 1)/(−sin x))       p   =   lim_(x→π)  ((2πsin 2x+ 1)/(sin x))        p    =   ((2π×0+1)/0) = (1/0)        p     =    ∞
uselhospitalrulep=limxπ2πsin2x1sinxp=limxπ2πsin2x+1sinxp=2π×0+10=10p=
Answered by qaz last updated on 25/Apr/22
lim_(x→π) ((πcos 2x−x)/(1+cos x))=lim_(x→0) ((πcos 2x−x−π)/(1−cos x))=lim_(x→0) ((π(1−2x^2 )−x−π)/((1/2)x^2 ))=±∞
limxππcos2xx1+cosx=limx0πcos2xxπ1cosx=limx0π(12x2)xπ12x2=±
Commented by JDamian last updated on 25/Apr/22
wrong
Commented by qaz last updated on 25/Apr/22
why would  you default to ′ x→π^+  ′ ?  why not ′ x→π^−  ′ ?
whywouldyoudefaulttoxπ+?whynotxπ?
Answered by Mathspace last updated on 25/Apr/22
changement x=π+t?give  f(x)=((πcos(2t)−t−π)/(1−cost))  (t→0)  ∼((π(1−2t^2 )−t−π)/(t^2 /2))=((−2πt^2 −t)/(t^2 /2))  =2(−2π−(1/t))=−4π−(2/t)→∞  lim f(x)=∞
changementx=π+t?givef(x)=πcos(2t)tπ1cost(t0)π(12t2)tπt22=2πt2tt22=2(2π1t)=4π2tlimf(x)=

Leave a Reply

Your email address will not be published. Required fields are marked *