lim-x-pi-sin-x-2-1-cos-sin-x-1- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 160178 by cortano last updated on 25/Nov/21 limx→πsinx2−1cos(sinx)−1=? Commented by blackmamba last updated on 25/Nov/21 limx→πsinx2−1cos(sinx)−1=limx→πsinx2−1−2sin2(sinx2)leth=sinx2;h→1=limh→1h−1−2sin2(h1−h2)=−12limh→1h−1h2(1−h)(1+h)=−12×−12=14. Answered by FongXD last updated on 25/Nov/21 L=limx→πcos(π−x2)−1cos(sin(π−x))−1lett=π−x,ifx→π,⇒t→0L=limt→0cost2−1cos(sint)−1L=limt→01−cost2(t2)2×141−cos(sint)sin2t×sin2tt2L=12×1412×12=14 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-160169Next Next post: Show-that-1-1-dx-5-cosh-x-13-sinh-x-1-2-log-e-15e-10-3e-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.