Menu Close

lim-x-pi-sin-x-2-1-cos-sin-x-1-




Question Number 160178 by cortano last updated on 25/Nov/21
    lim_(x→π)  ((sin (x/2)−1)/(cos (sin x)−1)) =?
limxπsinx21cos(sinx)1=?
Commented by blackmamba last updated on 25/Nov/21
        lim_(x→π)  ((sin (x/2)−1)/(cos (sin x)−1))          = lim_(x→π)  ((sin (x/2)−1)/(−2sin^2 (((sin x)/2))))   let h=sin (x/2) ;h→1         =lim_(h→1)  ((h−1)/(−2sin^2 (h(√(1−h^2 )))))       = −(1/2) lim_(h→1)  ((h−1)/(h^2 (1−h)(1+h)))      = −(1/2)×−(1/2) = (1/4) .
limxπsinx21cos(sinx)1=limxπsinx212sin2(sinx2)leth=sinx2;h1=limh1h12sin2(h1h2)=12limh1h1h2(1h)(1+h)=12×12=14.
Answered by FongXD last updated on 25/Nov/21
L=lim_(x→π) ((cos(((π−x)/2))−1)/(cos(sin(π−x))−1))  let t=π−x, if x→π, ⇒ t→0  L=lim_(t→0) ((cos(t/2)−1)/(cos(sint)−1))  L=lim_(t→0) ((((1−cos(t/2))/(((t/2))^2 ))×(1/4))/(((1−cos(sint))/(sin^2 t))×((sin^2 t)/t^2 )))  L=(((1/2)×(1/4))/((1/2)×1^2 ))=(1/4)
L=limxπcos(πx2)1cos(sin(πx))1lett=πx,ifxπ,t0L=limt0cost21cos(sint)1L=limt01cost2(t2)2×141cos(sint)sin2t×sin2tt2L=12×1412×12=14

Leave a Reply

Your email address will not be published. Required fields are marked *