Menu Close

lim-x-pi-sin-x-2-1-x-pi-




Question Number 179366 by mathlove last updated on 28/Oct/22
lim_(x→π) ((sin(x/2)−1)/(x−π))=?
limxπsinx21xπ=?
Commented by mahdipoor last updated on 28/Oct/22
=D_x (sin(x/2))_(x=π) =(1/2)cos((x/2))_(x=π) =0
=Dx(sinx2)x=π=12cos(x2)x=π=0
Commented by mathlove last updated on 28/Oct/22
discraib answer??
discraibanswer??
Commented by mr W last updated on 29/Oct/22
lim_(x→π) ((sin(x/2)−1)/(x−π))  =lim_(x→π) ((sin(x/2)−sin (π/2))/(x−π)) ← derivative of sin (x/2)  =(sin (x/2))′∣_(x=π)   =((1/2) cos (x/2))∣_(x=π)   =(1/2) cos (π/2)  =0
limxπsinx21xπ=limxπsinx2sinπ2xπderivativeofsinx2=(sinx2)x=π=(12cosx2)x=π=12cosπ2=0
Commented by mathlove last updated on 29/Oct/22
tanks
tanks
Commented by CElcedricjunior last updated on 29/Oct/22
lim_(x→𝛑) ((sin(x/2)−1)/(x−𝛑))=(0/0)=FI  to apply hospital   ⇔lim_(x→𝛑) ((sin(x/2)−1)/(x−𝛑))=lim_(x→𝛑) (((1/2)cos(x/2))/1)=0  lim_(x→𝛑) ((sin(x/2)−1)/(x−𝛑))=0  ...........le celebre cedric jinior......
limxπsinx21xπ=00=FItoapplyhospitallimxπsinx21xπ=limxπ12cosx21=0limxπsinx21xπ=0..lecelebrecedricjinior
Answered by a.lgnaoui last updated on 28/Oct/22
lim_(x→π) (1/2)×(((sin (x/2)−sin (π/2))/((x/2)−(π/2))))=(1/2)×((d(sin (x/2))_(x=π/2) )/dx)=(1/4)cos( (π/4) )=(1/4)×((√2)/2)=((√2)/8)
limxπ12×(sinx2sinπ2x2π2)=12×d(sinx2)x=π/2dx=14cos(π4)=14×22=28
Commented by Acem last updated on 29/Oct/22
fix (sin θ)′
fix(sinθ)
Answered by cortano1 last updated on 29/Oct/22
 lim_(x→π)  ((sin (x/2)−1)/(x−π))    let x−π=y ⇒x=π+y   L=lim_(y→0)  ((sin ((π/2)+(y/2))−1)/y)       =lim_(y→0)  ((cos (y/2)−1)/y)       =lim_(y→0)  ((−sin^2 ((y/2)))/((cos (y/2)+1)y))      = −lim_(y→0)  ((sin ((y/2)))/y) . lim_(y→0)  ((sin ((y/2)))/(cos ((y/2))+1))     =−(1/2)×0 = 0
limxπsinx21xπletxπ=yx=π+yL=limy0sin(π2+y2)1y=limy0cosy21y=limy0sin2(y2)(cosy2+1)y=limy0sin(y2)y.limy0sin(y2)cos(y2)+1=12×0=0
Commented by mathlove last updated on 29/Oct/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *