Menu Close

lim-x-pi-sin-x-2-1-x-pi-




Question Number 179366 by mathlove last updated on 28/Oct/22
lim_(x→π) ((sin(x/2)−1)/(x−π))=?
$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\frac{{sin}\frac{{x}}{\mathrm{2}}−\mathrm{1}}{{x}−\pi}=? \\ $$
Commented by mahdipoor last updated on 28/Oct/22
=D_x (sin(x/2))_(x=π) =(1/2)cos((x/2))_(x=π) =0
$$={D}_{{x}} \left({sin}\frac{{x}}{\mathrm{2}}\right)_{{x}=\pi} =\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\frac{{x}}{\mathrm{2}}\right)_{{x}=\pi} =\mathrm{0} \\ $$
Commented by mathlove last updated on 28/Oct/22
discraib answer??
$${discraib}\:{answer}?? \\ $$
Commented by mr W last updated on 29/Oct/22
lim_(x→π) ((sin(x/2)−1)/(x−π))  =lim_(x→π) ((sin(x/2)−sin (π/2))/(x−π)) ← derivative of sin (x/2)  =(sin (x/2))′∣_(x=π)   =((1/2) cos (x/2))∣_(x=π)   =(1/2) cos (π/2)  =0
$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\frac{{sin}\frac{{x}}{\mathrm{2}}−\mathrm{1}}{{x}−\pi} \\ $$$$=\underset{{x}\rightarrow\pi} {\mathrm{lim}}\frac{{sin}\frac{{x}}{\mathrm{2}}−\mathrm{sin}\:\frac{\pi}{\mathrm{2}}}{{x}−\pi}\:\leftarrow\:{derivative}\:{of}\:\mathrm{sin}\:\frac{{x}}{\mathrm{2}} \\ $$$$=\left(\mathrm{sin}\:\frac{{x}}{\mathrm{2}}\right)'\mid_{{x}=\pi} \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{x}}{\mathrm{2}}\right)\mid_{{x}=\pi} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}} \\ $$$$=\mathrm{0} \\ $$
Commented by mathlove last updated on 29/Oct/22
tanks
$${tanks} \\ $$
Commented by CElcedricjunior last updated on 29/Oct/22
lim_(x→𝛑) ((sin(x/2)−1)/(x−𝛑))=(0/0)=FI  to apply hospital   ⇔lim_(x→𝛑) ((sin(x/2)−1)/(x−𝛑))=lim_(x→𝛑) (((1/2)cos(x/2))/1)=0  lim_(x→𝛑) ((sin(x/2)−1)/(x−𝛑))=0  ...........le celebre cedric jinior......
$$\underset{{x}\rightarrow\boldsymbol{\pi}} {\mathrm{lim}}\frac{\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}−\mathrm{1}}{\boldsymbol{\mathrm{x}}−\boldsymbol{\pi}}=\frac{\mathrm{0}}{\mathrm{0}}=\boldsymbol{\mathrm{FI}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{apply}}\:\boldsymbol{\mathrm{hospital}}\: \\ $$$$\Leftrightarrow\underset{{x}\rightarrow\boldsymbol{\pi}} {\mathrm{lim}}\frac{\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}−\mathrm{1}}{\boldsymbol{\mathrm{x}}−\boldsymbol{\pi}}=\underset{{x}\rightarrow\boldsymbol{\pi}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{cos}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}}{\mathrm{1}}=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\boldsymbol{\pi}} {\mathrm{lim}}\frac{\boldsymbol{\mathrm{sin}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}−\mathrm{1}}{\boldsymbol{\mathrm{x}}−\boldsymbol{\pi}}=\mathrm{0} \\ $$$$………..{le}\:{celebre}\:{cedric}\:{jinior}…… \\ $$
Answered by a.lgnaoui last updated on 28/Oct/22
lim_(x→π) (1/2)×(((sin (x/2)−sin (π/2))/((x/2)−(π/2))))=(1/2)×((d(sin (x/2))_(x=π/2) )/dx)=(1/4)cos( (π/4) )=(1/4)×((√2)/2)=((√2)/8)
$$\mathrm{lim}_{\mathrm{x}\rightarrow\pi} \frac{\mathrm{1}}{\mathrm{2}}×\left(\frac{\mathrm{sin}\:\frac{{x}}{\mathrm{2}}−\mathrm{sin}\:\frac{\pi}{\mathrm{2}}}{\frac{{x}}{\mathrm{2}}−\frac{\pi}{\mathrm{2}}}\right)=\frac{\mathrm{1}}{\mathrm{2}}×\frac{{d}\left(\mathrm{sin}\:\frac{{x}}{\mathrm{2}}\right)_{{x}=\pi/\mathrm{2}} }{{dx}}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\left(\:\frac{\pi}{\mathrm{4}}\:\right)=\frac{\mathrm{1}}{\mathrm{4}}×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$
Commented by Acem last updated on 29/Oct/22
fix (sin θ)′
$${fix}\:\left(\mathrm{sin}\:\theta\right)' \\ $$
Answered by cortano1 last updated on 29/Oct/22
 lim_(x→π)  ((sin (x/2)−1)/(x−π))    let x−π=y ⇒x=π+y   L=lim_(y→0)  ((sin ((π/2)+(y/2))−1)/y)       =lim_(y→0)  ((cos (y/2)−1)/y)       =lim_(y→0)  ((−sin^2 ((y/2)))/((cos (y/2)+1)y))      = −lim_(y→0)  ((sin ((y/2)))/y) . lim_(y→0)  ((sin ((y/2)))/(cos ((y/2))+1))     =−(1/2)×0 = 0
$$\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}−\mathrm{1}}{\mathrm{x}−\pi}\: \\ $$$$\:\mathrm{let}\:\mathrm{x}−\pi=\mathrm{y}\:\Rightarrow\mathrm{x}=\pi+\mathrm{y} \\ $$$$\:\mathrm{L}=\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}+\frac{\mathrm{y}}{\mathrm{2}}\right)−\mathrm{1}}{\mathrm{y}} \\ $$$$\:\:\:\:\:=\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\frac{\mathrm{y}}{\mathrm{2}}−\mathrm{1}}{\mathrm{y}} \\ $$$$\:\:\:\:\:=\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{y}}{\mathrm{2}}\right)}{\left(\mathrm{cos}\:\frac{\mathrm{y}}{\mathrm{2}}+\mathrm{1}\right)\mathrm{y}} \\ $$$$\:\:\:\:=\:−\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{y}}{\mathrm{2}}\right)}{\mathrm{y}}\:.\:\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{y}}{\mathrm{2}}\right)}{\mathrm{cos}\:\left(\frac{\mathrm{y}}{\mathrm{2}}\right)+\mathrm{1}} \\ $$$$\:\:\:=−\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{0}\:=\:\mathrm{0} \\ $$
Commented by mathlove last updated on 29/Oct/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *